Условие разложения функции в ряд Маклорена: если функция f(x) дифференцируема в окрестностях точки x0 любое число раз и в некоторой окрестности этой точки lim Rn(x)=0.
Преимуществом онлайн калькулятора является то, что Вам нет необходимости знать все методы разложения функции в ряд Маклорена. Чтобы получить ответ, укажите функцию, которую нужно разложить. Основные примеры функций для данного калькулятора указаны ниже.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Основные функции
\left(a=\operatorname{const} \right)
x^{a}: x^a
модуль x: abs(x)
\sqrt{x}: Sqrt[x]
\sqrt[n]{x}: x^(1/n)
a^{x}: a^x
\log_{a}x: Log[a, x]
\ln x: Log[x]
\cos x: cos[x] или Cos[x]
\sin x: sin[x] или Sin[x]
\operatorname{tg}x: tan[x] или Tan[x]
\operatorname{ctg}x: cot[x] или Cot[x]
\sec x: sec[x] или Sec[x]
\operatorname{cosec} x: csc[x] или Csc[x]
\arccos x: ArcCos[x]
\arcsin x: ArcSin[x]
\operatorname{arctg} x: ArcTan[x]
\operatorname{arcctg} x: ArcCot[x]
\operatorname{arcsec} x: ArcSec[x]
\operatorname{arccosec} x: ArcCsc[x]
\operatorname{ch} x: cosh[x] или Cosh[x]
\operatorname{sh} x: sinh[x] или Sinh[x]
\operatorname{th} x: tanh[x] или Tanh[x]
\operatorname{cth} x: coth[x] или Coth[x]
\operatorname{sech} x: sech[x] или Sech[x]
\operatorname{cosech} x: csch[x] или Csch[е]
\operatorname{areach} x: ArcCosh[x]
\operatorname{areash} x: ArcSinh[x]
\operatorname{areath} x: ArcTanh[x]
\operatorname{areacth} x: ArcCoth[x]
\operatorname{areasech} x: ArcSech[x]
\operatorname{areacosech} x: ArcCsch[x]
[19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)
ответ:Последовательность действий при решении системы линейных уравнений подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Пошаговое объяснение:
Последовательность действий при решении системы линейных уравнений подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
{
3
x
+
y
=
7
−
5
x
+
2
y
=
3
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
{
y
=
7
—
3
x
−
5
x
+
2
(
7
−
3
x
)
=
3
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
−
5
x
+
2
(
7
−
3
x
)
=
3
⇒
−
5
x
+
14
−
6
x
=
3
⇒
−
11
x
=
−
11
⇒
x
=
1
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
y
=
7
−
3
⋅
1
⇒
y
=
4
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Решение систем линейных уравнений сложения
Рассмотрим еще один решения систем линейных уравнений сложения. При решении систем этим , как и при решении подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
{
2
x
+
3
y
=
−
5
x
−
3
y
=
38
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
{
3
x
=
33
x
−
3
y
=
38
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение
x
−
3
y
=
38
получим уравнение с переменной y:
11
−
3
y
=
38
. Решим это уравнение:
−
3
y
=
27
⇒
y
=
−
9
Таким образом мы нашли решение системмы уравнений сложения:
x
=
11
;
y
=
−
9
или
(
11
;
−
9
)
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Данный калькулятор предназначен для разложения функции в ряд Маклорена онлайн.
Ряд Маклорена – это частный случай ряда Тейлора в окрестности точки x=0.
Ряд Маклорена (Макларена) имеет следующий вид:
f(x)= ∑∞n=0fn(0) xn/n!= f(0)+f’(x)+f’’(0)x2/2!+…+fn(0)xn/n!+Rn
Пошаговое объяснение:
Условие разложения функции в ряд Маклорена: если функция f(x) дифференцируема в окрестностях точки x0 любое число раз и в некоторой окрестности этой точки lim Rn(x)=0.
Преимуществом онлайн калькулятора является то, что Вам нет необходимости знать все методы разложения функции в ряд Маклорена. Чтобы получить ответ, укажите функцию, которую нужно разложить. Основные примеры функций для данного калькулятора указаны ниже.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Основные функции
\left(a=\operatorname{const} \right)
x^{a}: x^a
модуль x: abs(x)
\sqrt{x}: Sqrt[x]
\sqrt[n]{x}: x^(1/n)
a^{x}: a^x
\log_{a}x: Log[a, x]
\ln x: Log[x]
\cos x: cos[x] или Cos[x]
\sin x: sin[x] или Sin[x]
\operatorname{tg}x: tan[x] или Tan[x]
\operatorname{ctg}x: cot[x] или Cot[x]
\sec x: sec[x] или Sec[x]
\operatorname{cosec} x: csc[x] или Csc[x]
\arccos x: ArcCos[x]
\arcsin x: ArcSin[x]
\operatorname{arctg} x: ArcTan[x]
\operatorname{arcctg} x: ArcCot[x]
\operatorname{arcsec} x: ArcSec[x]
\operatorname{arccosec} x: ArcCsc[x]
\operatorname{ch} x: cosh[x] или Cosh[x]
\operatorname{sh} x: sinh[x] или Sinh[x]
\operatorname{th} x: tanh[x] или Tanh[x]
\operatorname{cth} x: coth[x] или Coth[x]
\operatorname{sech} x: sech[x] или Sech[x]
\operatorname{cosech} x: csch[x] или Csch[е]
\operatorname{areach} x: ArcCosh[x]
\operatorname{areash} x: ArcSinh[x]
\operatorname{areath} x: ArcTanh[x]
\operatorname{areacth} x: ArcCoth[x]
\operatorname{areasech} x: ArcSech[x]
\operatorname{areacosech} x: ArcCsch[x]
[19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)
ответ:Последовательность действий при решении системы линейных уравнений подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Пошаговое объяснение:
Последовательность действий при решении системы линейных уравнений подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
{
3
x
+
y
=
7
−
5
x
+
2
y
=
3
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
{
y
=
7
—
3
x
−
5
x
+
2
(
7
−
3
x
)
=
3
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
−
5
x
+
2
(
7
−
3
x
)
=
3
⇒
−
5
x
+
14
−
6
x
=
3
⇒
−
11
x
=
−
11
⇒
x
=
1
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
y
=
7
−
3
⋅
1
⇒
y
=
4
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Решение систем линейных уравнений сложения
Рассмотрим еще один решения систем линейных уравнений сложения. При решении систем этим , как и при решении подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
{
2
x
+
3
y
=
−
5
x
−
3
y
=
38
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
{
3
x
=
33
x
−
3
y
=
38
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение
x
−
3
y
=
38
получим уравнение с переменной y:
11
−
3
y
=
38
. Решим это уравнение:
−
3
y
=
27
⇒
y
=
−
9
Таким образом мы нашли решение системмы уравнений сложения:
x
=
11
;
y
=
−
9
или
(
11
;
−
9
)
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.