В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Mashylka999
Mashylka999
21.07.2020 13:16 •  Математика

Упростить выражение tgα⋅(1−sin2α)

Показать ответ
Ответ:
Dima1208
Dima1208
20.08.2021 19:50

Весь груз примем за единицу (целое).

1) 1 - 5/13 = 13/13 - 5/13 = 8/13 - оставшаяся часть груза;

2) 8/13 - 5/13 = 3/13 - часть груза, равная 810 т (на столько больше осталось перевезти);

3) Находим целое по его части:

810 : 3/13 = 810 : 3 · 13 = 3510 т - столько груза необходимо перевезти.

ответ: 3510 т.

Проверка:

5/13 · 3510 = 3510 : 13 · 5 = 1350 т - столько груза перевезли

8/13 · 3510 = 3510 : 13 · 8 = 2160 т - столько груза осталось перевезти

2160 - 1350 = 810 т - на столько больше осталось перевезти

0,0(0 оценок)
Ответ:
evauvanova1998
evauvanova1998
09.12.2021 14:58
Раскладываем левую часть на простые множители.
150^a=(2\cdot3\cdot5^2)^a=2^a\cdot3^a\cdot5^{2a}\\
\left(\dfrac{200}3\right)^b=(2^3\cdot3^{-1}\cdot5^2)^b=2^{3b}\cdot3^{-b}\cdot5^{2b}\\
2250^c=(2\cdot3^2\cdot5^3)^c=2^c\cdot3^{2c}\cdot5^{3c}\\
150^a\cdot\left(\dfrac{200}3\right)^b\cdot2250^c=2^{a+3b+c}\cdot3^{a-b+2c}\cdot5^{2a+2b+3c}

Поскольку 506250=2\cdot3^4\cdot5^5, то равенство при целых a, b, c будет в том и только в том случае, если будет выполняться система
\begin{cases}a+3b+c=1\\a-b+2c=4\\2a+2b+3c=5\end{cases}

Заметим, что третье уравнения системы - сумма первых двух, так что его можно убрать из рассмотрения, останется система из двух уравнений с тремя неизвестными. Выразим b и c через a:
\begin{cases}a+3b+c=1\\a-b+2c=4\end{cases}\begin{cases}a+3(a+2c-4)+c=1\\b=a+2c-4\end{cases}\\\begin{cases}7c=13-4a\\b=a+2c-4\end{cases}\\\begin{cases}c=\dfrac{13-4a}7\\b=-\dfrac{a+2}7\end{cases}

Поскольку b должно быть целым, a должно давать остаток 5 при делении на 7; a=7a'+5. Подставляем:
\begin{cases}a=7a'+5\\b=-a'-1\\c=-4a'-1\end{cases}

Эти равенства при любых целых a' задают все целочисленные решения уравнения. Найдём количество решений, удовлетворяющих неравенству.
|a+b+c|=|7a'+5-a'-1-4a'-1|\ \textless \ 91\\
|2a'+3|\ \textless \ 91\\
-91\ \textless \ 2a'+3\ \textless \ 91\\
-94\ \textless \ 2a'\ \textless \ 88\\
-47\ \textless \ a'\ \textless \ 44

Подходят -47 < a' < 44, таких a' найдётся 44 + 47 - 1 = 90
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота