Упросторі задано точку а(1; 2; 3) яка з указаних точок симетрична точци а відносно площині х о у а (-1; -2; 3) б(-1; 2; -3) в ( - 1; 2; 3; ) г ( 1; - 2; 3; ) д ( 1; - 2; - 3; )
лев. к. ? ябл., но в 3 раза < ср. и пр. вместе; ср.к ? ябл., но в 2 раза < лев. и пр. вместе; пр.к. 15 ябл. в 3-х вместе ? ябл. Решение. А Р И Ф М Е Т И Ч Е С К И Й С П О С О Б. 1:(1+3) = 1/4 (часть) часть всех яблок в левой корзине, так как в остальных в 3 раза больше; 1:(1+2) = 1/3 (часть) часть всех яблок в средней корзине, так как в остальных в 2 раза больше; 1/4 + 1/3 = 7/12 (части) часть всех яблок в левой и средней корзине вместе; 1 - 7/12 =5/12(частей) часть всех яблок в правой корзине; 5/12 части = 15 яблок равенство найденных частей и яблок по условию: 15 : 5 *12 = 36 (яблок) нахождение числа по его части; ответ: в трех корзинах 36 яблок; Проверка: В левой корзине: 36*(1/4) = 9(ябл.); в средней корзине: 36*(1/3) = 12 (ябл.) в правой корзине: 36 - 9 - 12 = 15; 15 =15 А Л Г Е Б Р А И Ч Е С К И Й С П О С О Б. Х яблоки в левой корзине; Х+15 яблоки в левой и правой корзинах вместе; (Х+15):2 яблоки в средней корзине; (Х+15):2 + 15 яблоки в средней и правой корзинах вместе; 3Х = (Х+15):2 + 15 соотношение яблок по условию; 6Х = Х + 15 + 30 все члены уравнения умножены на 2; 5Х = 45 ; Х = 9 (ябл.) число яблок в первой корзине; (9 +15) :2 = 12 (ябл.) число яблок в средней корзине; 9 + 12 + 15 = 36 (ябл.) --- число яблок в трех корзинах; ответ: В трех корзинах 36 яблок. Проверка: 9 *3 = 12 +15; 27=27;
100 - а = 13
100 - уменьшаемое, а - вычитаемое, 13 - разность. Чтобы найти вычитаемое, надо из уменьшаемого вычесть разность.
а = 100 - 13 = 87
Проверка: 100 - 87 = 13.
а - 55 = 26
а - уменьшаемое, 55 - вычитаемое, 26 - разность. Чтобы найти уменьшаемое, надо к разности прибавить вычитаемое.
а = 26 + 55 = 81
Проверка: 81 - 55 = 26.
72 : b = 9
72 - делимое, b - делитель, 9 - частное. Чтобы найти делитель, надо делимое разделить на частное.
b = 72 : 9 = 8
Проверка: 72 : 8 = 9.
b : 4 = 7
b - делимое, 4 - делитель, 7 - частное. Чтобы найти делимое, надо частное умножить на делитель.
b = 7 * 4 = 28
Проверка: 28 : 4 = 7.
ср.к ? ябл., но в 2 раза < лев. и пр. вместе;
пр.к. 15 ябл.
в 3-х вместе ? ябл.
Решение.
А Р И Ф М Е Т И Ч Е С К И Й С П О С О Б.
1:(1+3) = 1/4 (часть) часть всех яблок в левой корзине, так как в остальных в 3 раза больше;
1:(1+2) = 1/3 (часть) часть всех яблок в средней корзине, так как в остальных в 2 раза больше;
1/4 + 1/3 = 7/12 (части) часть всех яблок в левой и средней корзине вместе;
1 - 7/12 =5/12(частей) часть всех яблок в правой корзине;
5/12 части = 15 яблок равенство найденных частей и яблок по условию:
15 : 5 *12 = 36 (яблок) нахождение числа по его части;
ответ: в трех корзинах 36 яблок;
Проверка: В левой корзине: 36*(1/4) = 9(ябл.);
в средней корзине: 36*(1/3) = 12 (ябл.)
в правой корзине: 36 - 9 - 12 = 15; 15 =15
А Л Г Е Б Р А И Ч Е С К И Й С П О С О Б.
Х яблоки в левой корзине;
Х+15 яблоки в левой и правой корзинах вместе;
(Х+15):2 яблоки в средней корзине;
(Х+15):2 + 15 яблоки в средней и правой корзинах вместе;
3Х = (Х+15):2 + 15 соотношение яблок по условию;
6Х = Х + 15 + 30 все члены уравнения умножены на 2;
5Х = 45 ; Х = 9 (ябл.) число яблок в первой корзине;
(9 +15) :2 = 12 (ябл.) число яблок в средней корзине;
9 + 12 + 15 = 36 (ябл.) --- число яблок в трех корзинах;
ответ: В трех корзинах 36 яблок.
Проверка: 9 *3 = 12 +15; 27=27;