Поверхность прямоугольного параллелепипеда состоит из 6 граней, каждая из которых является прямоугольником. Противоположные грани прямоугольного параллелепипеда равны, поэтому площадь поверхности прямоугольного параллелепипеда вычисляют по формуле:
S = 2 · (a · b + a · c + b · c), где a, b, c - измерения прямоугольного параллелепипеда (длина, ширина и высота), S - площадь его поверхности.
Поверхность прямоугольного параллелепипеда состоит из 6 граней, каждая из которых является прямоугольником. Противоположные грани прямоугольного параллелепипеда равны, поэтому площадь поверхности прямоугольного параллелепипеда вычисляют по формуле:
S = 2 · (a · b + a · c + b · c), где a, b, c - измерения прямоугольного параллелепипеда (длина, ширина и высота), S - площадь его поверхности.
Поэтому:
а) а = 3 см, b = 6 см, с = 7 см
S = 2 · (3 · 6 + 3 · 7 + 6 · 7) = 2 · (18 + 21 + 42) = 2 · 81 = 162 (cм²);
б) а = 11 м, b = 13 дм, с = 13 дм
S = 2 · (11 · 13 + 11 · 13 + 13 · 13) = 2 · (143 + 143 + 169) = 2 · 455 = 910 (дм²);
в) а = 40 дм, b = 9 дм, с= 6 дм
S = 2 · (40 · 9 + 40 · 6 + 9 · 6) = 2 · (360 + 240 + 54) = 2 · 654 = 1308 (дм²)
Чтобы составить канонические уравнения прямой, нужно знать точку и направляющий вектор. А у нас даны уравнения двух плоскостей:
{5x + 3y + z - 18 = 0
{ 2y + z - 9 = 0.
Пусть x = 0 , тогда получаем систему двух линейных уравнений с двумя неизвестными:
{3y + z - 18 = 0
{2y + z - 9 = 0.
Вычтем из первого уравнения второе.
у - 9 = 0. Найдена координата у = 9.
Тогда z = -2y + 9 = -2*9 + 9 = -9.
Получили точку на заданной прямой: (0; 9; -9).
Находим направляющий вектор прямой как результат векторного умножения нормальных векторов заданных плоскостей.
i j k | i j
5 3 1 | 5 3
0 2 1 | 0 2. Применим треугольную схему.
3i + 0 + 10 k - 5j - 2i - 0 = 1i - 5j + 10к.
Направляющий вектор равен (1; -5; 10).
Теперь можно составить каноническое уравнение прямой.
(x /1) = (y - 9)/(-5) = (z + 9)/10.
Если каждый член этого уравнения приравнять t, то получим параметрические уравнения прямой.
{x = t,
{y = -5t + 9,
{ z = 10t - 9.