Усаду Посадили дерева: персики, груші та абрикоси. Персиків та абрикос усього 47 дерев, груш та персиків — 53 дерева, а абрикос та груш — 58 дерев. Скільки дерев кожного виду посадили в саду?
В году в среднем 365 дней. В среднем 52-53 понедельника. Пусть все числа в году будут под номерами от 1 до 365. Тогда 13 число месяца ( начиная с января) встречается в следующие по счету дни: 13 , 13+31= 44 , 44+28= 72 , 72+31=103, 103+30=133, 133+31= 164, 164+30= 194, 194+31= 225, 225+30 = 255, 255+31= 286, 286+30 = 316, 316+31 = 347 Теперь сколько раз повторяются дни недели (разделим на 7, посмотрим остатки) 13:7= 1 ост.6 72 :7 = 10 ост.2 103: 7 = 14 ост. 5 133: 7= 19 ост.0 164:7 = 23 ост. 3 194:7= 27 ост.5 225 : 7=32 ост.1 255 :7 =36 ост.3 286 :7=40 ост. 6 316 : 7= 45 ост.1 347:7=49 ост.4 Если мыслить логически , то все остатки от 0 до 6 ( пн.-воскр.) присутствуют , т.е. на 13 число может выпасть любой день недели. Остаток 0 - выпадает один раз , значит наименьшее количество понедельников с 13 числом - 1 день в году. Остаток 3 - выпадает больше раз, чем все остальные числа - 3 раза , значит наибольшее количество понедельников с 13 числом - 3 раза в год . ответ: 3 раза в год - наибольшее количество понедельников с 13 числом. Может и можно решить как-то проще, но .. я не знаю как.
Необходимо посчитать сколько отрицательных чисел в примере. Если их количество четное, то значение выражения положительное число. Если их количество нечетное, то значение выражения отрицательное число. Так положительными будут выражения 2, 3, 4, а отрицательными будут выражения 1, 5, 6, 7, 8 В 6, 7 и 8 выражениях наблюдается закономерность: чередование положительного числа с отрицательным так, если продолжить выражение до его окончания, указанного в примере, и посчитать количество отрицательных чисел, мы получим, что результат отрицательный
Пусть все числа в году будут под номерами от 1 до 365.
Тогда 13 число месяца ( начиная с января) встречается в следующие по счету дни:
13 ,
13+31= 44 ,
44+28= 72 ,
72+31=103,
103+30=133,
133+31= 164,
164+30= 194,
194+31= 225,
225+30 = 255,
255+31= 286,
286+30 = 316,
316+31 = 347
Теперь сколько раз повторяются дни недели (разделим на 7, посмотрим остатки)
13:7= 1 ост.6
72 :7 = 10 ост.2
103: 7 = 14 ост. 5
133: 7= 19 ост.0
164:7 = 23 ост. 3
194:7= 27 ост.5
225 : 7=32 ост.1
255 :7 =36 ост.3
286 :7=40 ост. 6
316 : 7= 45 ост.1
347:7=49 ост.4
Если мыслить логически , то все остатки от 0 до 6 ( пн.-воскр.) присутствуют , т.е. на 13 число может выпасть любой день недели.
Остаток 0 - выпадает один раз , значит наименьшее количество понедельников с 13 числом - 1 день в году.
Остаток 3 - выпадает больше раз, чем все остальные числа - 3 раза , значит наибольшее количество понедельников с 13 числом - 3 раза в год .
ответ: 3 раза в год - наибольшее количество понедельников с 13 числом.
Может и можно решить как-то проще, но .. я не знаю как.
Если их количество четное, то значение выражения положительное число.
Если их количество нечетное, то значение выражения отрицательное число.
Так положительными будут выражения 2, 3, 4, а
отрицательными будут выражения 1, 5, 6, 7, 8
В 6, 7 и 8 выражениях наблюдается закономерность: чередование положительного числа с отрицательным так, если продолжить выражение до его окончания, указанного в примере, и посчитать количество отрицательных чисел, мы получим, что результат отрицательный