Установи соответствие между точками и их координатами (в поле ответов впиши только номер ответа без скобок) Точки Координаты D 1) 4,3 E 2) 4,7 F 3) 0,04 4) 0,4 5) 7,4
Уравнение окружности имеет вид: (х - хА)² + (у - уА)² = R²
Координаты центра окружности А
xA = -1; yA = 2
Найдём квадрат радиуса окружности R².
R² = (xM - xA)² + (yM - yA)²
Координаты точки М
xM = 1; yM = 7
R² = (1 - (-1))² + (7 - 2)² = 4 + 25 = 29
Запишем уравнение окружности
(х + 1)² + (у - 2)² = 29
3)Если АВСD - параллелограмм, то векторы АВ и DС равны, ВС и АD равны. Везде над векторами надо ставить стрелки или черточки.
Пусть В(х;у), найдем координаты точки В предварительно определив координаты векторов АВ и DС, вычитая для каждого из координат конца координаты начала вектора.
АВ(х-3;у+2)
DС(9+4;8+5);
х-3=13
у+2=13
х=16
у=11
ВС(9-х;8-у)=АD(-7;-3)⇒9-х=-7;х=16;
8-у=-3; у=16
Значит В(16;11)
4)Для определения b и к в уравнение прямой у=кх +b подставим координаты указанных точек , получим
1=к+b
13=-к*2+b
Вычтем из второго уравнения первое. 12=-3к, откуда к=-4, подставм в первое 1=-4+b, b=5
ДИСКРЕНАЯ МАТЕТАТИКА 1.1. Множества заданий множеств. 1. Проиллюстрируйте с кругов Эйлера высказывание: «Все учащиеся 5 класса присутствовали на школьной спартакиаде». Решение: Выделим множества, о которых идет речь в высказывании: это множество учащихся некоторой школы (обозначим его за А), и множество учащихся 5 класса (обозначим его В). В данном высказывании утверждается, что все элементы множества В являются также и элементами множества А. По определению отношения включения это означает, что В А. Поэтому множество В надо изобразить внутри круга, изображающего множество А. 2. Задайте множество другим если это возможно): а) А = {х| xN, х ≤ 9}; б) А = {-4, -3, -2, -1, 0, 1, 2, 3, 4}; в) А = {х| xR, х 2 – 3 = 0}. Решение: а) Элементами множества А являются натуральные числа, которые меньше 9 и само число 9, значит, А = {1, 2, 3, 4, 5, 6, 7, 8, 9}; б) А = {х| xZ, |x| ≤ 4} – множество целых чисел, модуль которых не больше четырех; в) Элементами множества А являются корни уравнения х 2 – 3 = 0, значит, А = {- 3 , 3 }. 3. Изобразите на координатной прямой перечисленные множества: а) А = {х| xR, -1,5 ≤ х ≤ 6,7}; б) М = {х| xN, 4х - 14 < 0}; в) С = {х| xZ, -5 < х <2}; г) Н = {х| xZ, |x| < 7}. Решение: ответы показаны на рисунке: а) А = [-1,5; 6,7] б) М = {1, 2, 3} в) С = (-5; 2) г) Н = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6} 4. Задайте числовое множество описанием характеристического свойства элементов: а) (0; 11); б) [-12,3; 1,1); в) [-5; 3]; г) (- ∞; -102,354]. Решение: а) А = {х| xR, 0 < х <11}; б) С = {х| xR, -12,3 ≤ х < 1,1}; в) А = {х| xR, -5 ≤ х ≤ 3}; г) Р = {х| xR, х ≤ -102,354}. 5. Даны множества: а) К = {у| у = 1, если уN, то у + 1N}, У = {у| уZ, у > 0}; б) К = Ø, У = {Ø}; в) К = {с, п, р}, У = {{с, п}, р }. Равны ли множества К и У
1)|BC| =√( (4 -(-2))² +(1-5)² ) =√ (6² +4² ) =2√13 .
Пусть M середина отрезка BC : BM =CM .
X(M) = (X(B) +X(C) )/2= (-2 +4)/2 =1;
Y(M) = (Y(B) +Y(C)) /2 }= (5+1) /2=3.
ответ : |BC| =2√13 , M { 1 ; 3 }.
2)(х + 1)² + (у - 2)² = 29
Уравнение окружности имеет вид: (х - хА)² + (у - уА)² = R²
Координаты центра окружности А
xA = -1; yA = 2
Найдём квадрат радиуса окружности R².
R² = (xM - xA)² + (yM - yA)²
Координаты точки М
xM = 1; yM = 7
R² = (1 - (-1))² + (7 - 2)² = 4 + 25 = 29
Запишем уравнение окружности
(х + 1)² + (у - 2)² = 29
3)Если АВСD - параллелограмм, то векторы АВ и DС равны, ВС и АD равны. Везде над векторами надо ставить стрелки или черточки.
Пусть В(х;у), найдем координаты точки В предварительно определив координаты векторов АВ и DС, вычитая для каждого из координат конца координаты начала вектора.
АВ(х-3;у+2)
DС(9+4;8+5);
х-3=13
у+2=13
х=16
у=11
ВС(9-х;8-у)=АD(-7;-3)⇒9-х=-7;х=16;
8-у=-3; у=16
Значит В(16;11)
4)Для определения b и к в уравнение прямой у=кх +b подставим координаты указанных точек , получим
1=к+b
13=-к*2+b
Вычтем из второго уравнения первое. 12=-3к, откуда к=-4, подставм в первое 1=-4+b, b=5
Окончательно получим у=-4х+5
Пошаговое объяснение: