На (1;2) f(x)=2 на (2;3) f(x)=4 на (3;4) f(x)=6 на (4;5) f(x)=8 на (5;6) f(x)=10 и т. д. график см. рисунок в приложении. Обратите внимание, ни крайне левой точки, ни крайне правой точки на ступеньках нет Если соединить начало координат и левые края ступенек в верхней полуплоскости, получим прямую у=2х. Но k=2 не является ответом, так как левые края ступенек не являются точками графика, как и правые. у=2х и у=0,75 х не удовлетворяют условию. См. рисунок 2. Сужаем угол.
Рассмотрим прямую, проходящую через точку (0;0) и точку (11; 20) Эта прямая будет пересекать график в 9 точках на отрезке, где f(x)=2 f(x)=4 f(x)=6 f(x)=8 f(x)=10 f(x)=12 f(x)=14 f(x)=16 f(x)=18
В условии был интервал (m;m+1). Потом стал [m;m+1). Значит к=2 входит в ответ. Прямая у=0,75х (проходит через (0;0) и (3;4) будет иметь одну точку пересечения. Прямая у=1,8х (проходящая через точки (0:0)и (9;18) девять. При 1,8<k<=2 ,будет более девяти. Это в верхней полуплоскости. В нижней 2<=k<18/8=2,25. Прямая, проходящая через правый край ступеньки f(x)=-18, т.е точку (-8;-18) ответ (1,8;2,25)
на (2;3) f(x)=4
на (3;4) f(x)=6
на (4;5) f(x)=8
на (5;6) f(x)=10
и т. д.
график см. рисунок в приложении.
Обратите внимание, ни крайне левой точки, ни крайне правой точки на ступеньках нет
Если соединить начало координат и левые края ступенек в верхней полуплоскости, получим прямую у=2х.
Но k=2 не является ответом, так как левые края ступенек не являются точками графика, как и правые.
у=2х и у=0,75 х не удовлетворяют условию. См. рисунок 2.
Сужаем угол.
Рассмотрим прямую, проходящую через точку (0;0) и точку (11;
20)
Эта прямая будет пересекать график в 9 точках
на отрезке, где
f(x)=2
f(x)=4
f(x)=6
f(x)=8
f(x)=10
f(x)=12
f(x)=14
f(x)=16
f(x)=18
В условии был интервал (m;m+1). Потом стал [m;m+1).
Значит к=2 входит в ответ.
Прямая у=0,75х (проходит через (0;0) и (3;4) будет иметь одну точку пересечения.
Прямая у=1,8х (проходящая через точки (0:0)и (9;18) девять.
При 1,8<k<=2 ,будет более девяти. Это в верхней полуплоскости. В нижней 2<=k<18/8=2,25. Прямая, проходящая через правый край ступеньки f(x)=-18, т.е точку (-8;-18) ответ (1,8;2,25)
(n^4)^5 / (8m)³ : (4m²)^5 / n = [n^(4·5) · n] / {[(2³)³·m³] ·[(2²)^5·(m²)^5] =
= (n^20 · n) /( 2^9 · 2^10 · m³ · m^10) =
= n^21 / (2^19 · m^13
(∛16ab)^12 / (∛[(2a)^4·b^9] =
=(2^4·ab)^(1/3·12) / [(2^4)^(1/3) ·(a^4)^(1/3) · b^(9·1/3)] =
(2^4)^1/3 сокращаются
= (a^4 · b^4)/ (a^(4/3) · b³ =
= a^(4-4/3) · b^(4-3) = a^(8/3) · b =
= (∛a)^8 · b
Дальше решите сами: > времени теряю для разбора что написано , чем для решения!