1) Произвольное комплексное число z в алгебраической форме: z = a + b*i Оно же в тригонометрической форме: z = r*(cos Ф + i*sin Ф) Здесь r = √(a^2 + b^2); Ф = arctg(b/a)
2) z = 1 - i a = 1; b = -1; r = √(1^2 + (-1)^2) = √2; Ф = arctg(-1/1) = -pi/4 z = √2*(cos(-pi/4) + i*sin(-pi/4))
3) Сначала представим z в обычном алгебраическом виде: Для этого умножим числитель и знаменатель на комплексно-сопряженное.
Теперь переведем его в тригонометрическую форму
Здесь нам номер 2), в котором мы уже представляли 1 - i. По формуле Муавра для степени и корня комплексного числа: z^n = r^n*(cos(n*Ф) + i*sin(n*Ф))
Для левой части ур-ия применим формулу суммы синусов: Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2) А для правой части формулы понижения степени: Cos² x = (1 + Cos 2x) / 2 Sin² x = (1 - Cos 2x) / 2
То есть: 2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов: Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x: 2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда: Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов: Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть: -2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0 (π/2 + x)/2 = πk π/2 + x = 2πk x = -π/2 + 2πk
z = a + b*i
Оно же в тригонометрической форме:
z = r*(cos Ф + i*sin Ф)
Здесь r = √(a^2 + b^2); Ф = arctg(b/a)
2) z = 1 - i
a = 1; b = -1; r = √(1^2 + (-1)^2) = √2; Ф = arctg(-1/1) = -pi/4
z = √2*(cos(-pi/4) + i*sin(-pi/4))
3)
Сначала представим z в обычном алгебраическом виде:
Для этого умножим числитель и знаменатель на комплексно-сопряженное.
Теперь переведем его в тригонометрическую форму
Здесь нам номер 2), в котором мы уже представляли 1 - i.
По формуле Муавра для степени и корня комплексного числа:
z^n = r^n*(cos(n*Ф) + i*sin(n*Ф))
Для левой части ур-ия применим формулу суммы синусов:
Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2)
А для правой части формулы понижения степени:
Cos² x = (1 + Cos 2x) / 2
Sin² x = (1 - Cos 2x) / 2
То есть:
2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов:
Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x:
2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда:
Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов:
Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть:
-2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0
(π/2 + x)/2 = πk
π/2 + x = 2πk
x = -π/2 + 2πk
2) Sin ((π/2 - 9x)/2) = 0
(π/2 - 9x)/2 = πk
π/2 - 9x = 2πk
9x = π/2 - 2πk
x = π/18 - 2π/(9k)
ответ:
x = ±π/2 + 2πk, k — целое
x = π/18 - 2π/(9k)