В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bceznaika2
bceznaika2
05.03.2020 22:00 •  Математика

В △ABC медианы AA₁ и BB₁ пересекаются в точке О. BB₁ = 30 см, АВ = 101 см. Найдите медиану AA₁. *

Показать ответ
Ответ:
lebswetl
lebswetl
25.02.2021 04:44
Найдем центр окружности:
Общее уравнение (х-х0)^2+(у-у0)^2=R^2 
O(-4,1) R=√12
Найдем расстояние от центра окружности до точки и сравним с радиусом:
OA(2,2) из конечной точки (А) вычитается начальная точка (O)
|OA|=√(x2-x1)^2+(y2-y1)^2=√2^2+2^2=√8=
√8<√12 т.е точка находиться в окружности
Обрати внимание на выделенное:
1)Если ты нашел координ. вектора то можешь сразу возвести в квадрат каждое и проссумировать под корнем
2)Если лень искать использую формулу:√(x2-x1)^2+(y2-y1)^2 
1 координаты первой точки(О) 2-координаты второй точки (А)
0,0(0 оценок)
Ответ:
Дениссирвачак
Дениссирвачак
22.11.2020 03:31
Результаты исследования графика функции y=-x³+6x².

Область определения функции. ОДЗ:-∞<x<∞

Точка пересечения графика функции с осью координат Y:

График пересекает ось Y, когда x равняется 0: подставляем x=0 в =-x³+6x². 
Результат: y=0. Точка: (0, 0)

Точки пересечения графика функции с осью координат X:

График функции пересекает ось X при y=0, значит, нам надо решить уравнение:

-x³+6x²= 0

Решаем это уравнение  и его корни будут точками пересечения с X:

-x3+6x² = -x²(х-6) = 0

x=0. Точка: (0, 0)

x=6. Точка: (6, 0) .

Экстремумы функции:

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:

y'=-3x² + 12х=0

Решаем это уравнение и его корни будут экстремумами:

-3x² + 6х = -3x(х-4) = 0.

x=0. Точка: (0, 0)

x=2. Точка: (4, 32)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимум функции в точке: x_{2} = 0.
Максимум функции в точках: x_{2} = 4.

Возрастает на промежутке [0, 4].

Убывает на промежутках (-oo, 0] U [4, oo).



Исследовать на монотонность и точки экстремума функции. найти экстремум на монотонность и точки экст
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота