В автопарку було 120 легкових автомобілів. Вантажні автомобілі становили 65% від кількості легкових і 1 від кількостi автобусів. Скільки вантажівок і скільки автобусів було в автопарку?
1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
Пошаговое объяснение:
НОД (18; 21) = 3.
Как найти наибольший общий делитель для 18 и 21
Разложим на множители 18
18 = 2 • 3 • 3
Разложим на множители 21
21 = 3 • 7
Выберем одинаковые множители в обоих числах.
3
Находим произведение одинаковых множителей и записываем ответ
НОД (18; 21) = 3 = 3
НОК (Наименьшее общее кратное) 18 и 21
Наименьшим общим кратным (НОК) 18 и 21 называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел (18 и 21).
НОК (18, 21) = 126
Как найти наименьшее общее кратное для 18 и 21
Разложим на множители 18
18 = 2 • 3 • 3
Разложим на множители 21
21 = 3 • 7
Выберем в разложении меньшего числа (18) множители, которые не вошли в разложение
2 , 3
Добавим эти множители в разложение бóльшего числа
3 , 7 , 2 , 3
Полученное произведение запишем в ответ.
НОК (18, 21) = 3 • 7 • 2 • 3 = 126
1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
Оказываемся в точке (-14) (см. рис. 4)
ответ: -14