В четырёхугольнике АВСД сторона AB=X см. Выразите остальные стороны этого четырёхугольника, если : а) ВС на 3 см больше, чем AB; в) СД в 3,75 раз больше, чем AB; c) АД на 6,7 см меньше, чем СД. Периметр четырёхугольника АВСД равен 34,3 см.
0 на конце числа в том случае, если данное число можно разложить на множители, среди которых будут 2 и 5. Поэтому количество нулей на конце числа зависит от того, сколько 5 (пятёрок) входит в состав его множителей, так как на промежутке от 20 до 60 чётных чисел предостаточно.
Числа 20, 30, 35, 40, 45, 55, 60 содержат по одной 5. Всего 7.
Числа 25 и 50 содержат по две 5. Всего 4.
7+4=11
ответ: произведение всех натуральных чисел от 20 до 60 ВКЛЮЧИТЕЛЬНО заканчивается 11 нулями.
Если множитель, равный 60, не включать в данное произведение, то оно будет оканчиваться на 10 нулей.
Нуль на конце числа получается, если данное число можно разложить на множители, среди которых будут 2 и 5. Поэтому количество нулей на конце числа зависит от того, сколько 5 (пятёрок) входит в состав его множителей, так как на промежутке от 20 до 60 чётных чисел предостаточно.
Числа 20, 30, 35, 40, 45, 55, 60 содержат по одной 5. Всего 7.
Числа 25 и 50 содержат по две 5. Всего 4.
7+4=11
ответ: произведение всех натуральных чисел от 20 до 60 ВКЛЮЧИТЕЛЬНО заканчивается 11 нулями.
Если множитель, равный 60, не включать в данное произведение, то оно будет оканчиваться на 10 нулей.
0 на конце числа в том случае, если данное число можно разложить на множители, среди которых будут 2 и 5. Поэтому количество нулей на конце числа зависит от того, сколько 5 (пятёрок) входит в состав его множителей, так как на промежутке от 20 до 60 чётных чисел предостаточно.
Числа 20, 30, 35, 40, 45, 55, 60 содержат по одной 5. Всего 7.
Числа 25 и 50 содержат по две 5. Всего 4.
7+4=11
ответ: произведение всех натуральных чисел от 20 до 60 ВКЛЮЧИТЕЛЬНО заканчивается 11 нулями.
Если множитель, равный 60, не включать в данное произведение, то оно будет оканчиваться на 10 нулей.
Нуль на конце числа получается, если данное число можно разложить на множители, среди которых будут 2 и 5. Поэтому количество нулей на конце числа зависит от того, сколько 5 (пятёрок) входит в состав его множителей, так как на промежутке от 20 до 60 чётных чисел предостаточно.
Числа 20, 30, 35, 40, 45, 55, 60 содержат по одной 5. Всего 7.
Числа 25 и 50 содержат по две 5. Всего 4.
7+4=11
ответ: произведение всех натуральных чисел от 20 до 60 ВКЛЮЧИТЕЛЬНО заканчивается 11 нулями.
Если множитель, равный 60, не включать в данное произведение, то оно будет оканчиваться на 10 нулей.