в четырёхугольнике MNPK сторона MN=y см выразите остальные стороны мы этого четырёхугольника если : а) NP на 2 см меньше MN b) PK на 1,25 раза больше с)MK на 3 см больше PK 2) зная что периметр MNPK равен 37 см и используя данные пункты один составьте уравнение третье решите уравнения получите в пунктке 2, найдите длину MN .
Для решения данного линейного уравнения необходимо провести раскрытие скобок в левой его части.
0,4 * (1,3 + 5/9 * x) = 0,4 * 1,3 + 0,4 * 5/9 * x = 0,52 + 0,4 * 5/9 * x .
Во втором сомножителе десятичную дробь 0,4 заменяем на обыкновенную, проводим сокращение числителя и знаменателя на число 5.
0,52 + 0,4 * 5/9 * x = 0,52 + 4/10 * 5/9 * x = 0,52 + 2/5 * 5/9 * x = 0,52 + 2/9 * х.
После преобразования левой части уравнение примет вид.
0,52 + 2/9 * х = 7/9 * x - 1,48.
Сомножители с неизвестным х переносим в левую часть уравнения, а свободные члены в правую.
2/9 * х - 7/9 * x = -1,48 - 0,52.
- 5/9 * x = -2.
х = 2 * 9/5.
х = 18/5 = 3,6.
ответ. 3,6.
Прочертим прямые лини через эти точки перпендикулярно к осям координат, в результате имеем прямоугольный треугольник. Первоначальный отрезок является гипотенузой образовавшегося треугольника. Катеты треугольника сформированы отрезками, их длиной будет проекция гипотенузы на оси координат.
Установим длину этих проекций.
На ось у длина проекции равна y2 - y1, а на ось х длина проекции равна х2 - х1. На основании теоремы Пифагора видим, что |AB|² = (y2 – y1)² + (x2 – x1)².
В рассмотренном случае |AB| выступает длиной отрезка.
Вычислим длину отрезка АВ, для этого извлечем квадратный корень. Результатом является все та же формула длины отрезков по известным координатам конца и начала
Пошаговое объяснение: