Відстань між пристанями А і В дорівнює 40 км. Від А до В за
течією річки рухається моторний човен. Власна швидкість якого
18 км/год, а від В до А – інший моторний човен із власною
швидкістю 16 км/год. Коли вони зустрілися, то виявилося, що
перший човен був у дорозі 1 год, а другий – 1,5 год. Зайдіть
швидкість течії річки.
у- Скорость пешехода из В , из условия задачи имеем :
(х + у ) -столько проходят оба пешехода за 1 час
27/(х+ у) = 3 27 = 3(х+ у) 9 = х + у х = 9 - у
27/у - 27/х = 1 21/60 27/у - 27/х = 81/60 1/у - 1/х =3/60 1/у -1/х = 1/20 , умножим на 20ху , получим 20х -20у = ху , полученное значение х из первого уравнения подставим во второе уравнение : 20(9 - у) -20у = (9 - у) * у
180 -20у -20у = 9у - у^2 y^2 -49y +180 =0 , найдем дискриминант уравнения = 49*49 - 4*1*180 = 2401- 720 = 1681 .Найдем корень квадратный из дискриминанта . Он равен =41 . Найдем корни уравнения : 1-ый = (-(-49)+41)/2*1 = 90/2 = 45 2-ой = (-(-49)-41) /2*1 = 8/2= 4 . Первый корень не подходит : слишком большая скорость для пешехода . Значит скорость пешехода из В ровна = 4км/ч .Из первого уравнения найдем скорость пешехода из А,она равна= х= 9 -у
= 9-4 = 5 км/ч