В двух классах 6-а и 6-б всего 85 учеников. После того как с 6-а класса ¾ всех учеников ушли в кинотеатр, а с 6–б класса 5/9 всех учеников ушли в кинотеатр, выяснилось, что всего в кинотеатр пошли 55 учеников. Сколько учеников было в каждом классе первоначально
Пошаговое объяснение:
1) -59 - (-593) = -59 + 593 = 534 (минус на минус дает +, у 534 знак плюс, т.к. плюс у большего числа)
2) -(-526) - 431 = 526 - 431 = 95(минус на минус дает плюс).
3) -143 - (-142) = -143 + 142 = -1 (минус на минус дает плюс)
4) -(-325) + 69 = 325 + 69 = 394
5) -(-803) - 726 = 803 - 726 = 87
6) -(-643) - 54 = 643 - 54 = 589
7) -469 - 529 = -998 (а вот тут знак минус, т.к. он общий, то есть, у каждого числа)
8) -(-247) + 705 = 247 + 705 = 952
9) 69,276 - 843 = - 783,724
10) -(403) + 356 = -403 + 356 = -47
11) 831 + (-900) = -29
12) 1370 - (-1660) = 1370 + 1660 = 3030.
Выводы: 1) плюс на плюс дает плюс, минус на минус дает плюс, плюс на минус дает минус, минус на плюс дает минус.
2) Если у большего числа знак минус, то и у результата знак минус.
3) Если у большего числа знак плюс, то у результата будет плюс.
4) Если у обоих чисел знак минус, то у результата будет знак минус.
5) Если у обоих чисел знак плюс, то у результата будет плюс.
Задача решена.
Если f(1)=3 и максимальное значение f(x) =4 тогда чему равны а и b?
Решение
Из начальных условий f(1)=3 при х=1, следовательно
f(1)=-1²-2a*1+b=-2a+b-1
-2a + b - 1 = 3
b -2a = 4
Графиком функции F(x)=-x²-2ax+b является парабола с ветвями направленными вниз так как коэффициент перед x² меньше нуля.
Найдем вершину параболы
Производная функции равна
F'(x)=(-x²-2ax+b)' =-2x-2a
Найдем критическую точку приравняв производную к нулю
F'(x)=0
-2x-2a =0
х=-а
В точке х=-а функция имеет максимум так как ее производная при переходе через эту точку меняет знак с плюса на минус.
+ 0 -
----------!----------
-а
Можно также сразу найти точку максимума параболы так как для параболы y =ax²+bx+c
эта точка x =-b/(2a)
В нашем примере b=-2a, a=-1
x=-(-2a)/(2*(-1))=-a
Найдем значение максимум подставив x=-a в уравнение функции
f(-a)=-(-a)²-2a(-a)+b=-a²+2a²+b=a²+b
Из начальных условий максимальное значение равно 4, следовательно
a²+b = 4
Для нахождения значения параметров a и b необходимо решить систему уравнений
Поскольку правые части уравнений равны 4 то приравниваем левые части уравнений
a²+b=b-2a
a²+2a=0
a(a+2)=0
a=0 не подходит так как по условию задачи a≠0
a=-2
Из первого уравнений системы уравнений находим значение параметра b
b=4+2a=4+2(-2)=0
Запишем искомое уравнений функции
F(x)=-x²+4x
Проверим
F(1) =-1+4=3
xmax=-4/(2*(-1))=2
F(2)=-2²+4*2=-4+8=4
ответ: а=-2, b=0