В городе два водозабора. Вероятность того, что воде, закачанной с первого водозабора число патогенных бактерий больше предельно допустимого, равна 0.03. Для воды из второго водозабора эта вероятность равна 0.01. Для лабораторных испытаний было взято 20 проб воды из системы первого водозабора и 20 проб из системы второго водозабора. В выбранной случайным образом пробе воды уровень патогенных бактерий оказался выше предельно допустимого. Вероятность того, что эта проба была взята из системы первого водопровода равна (ответ записать в виде десятичной дроби с двумя знаками после запятой)
Рассмотрим сложенный из дощечкек квадрат на листочке в клеточку и увидим, что:
а - большая сторона параллелограмма,
а - основание маленького треугольника,
а - боковое ребро среднего треугольника
2а - основание большого треугольника,
b - меньшая сторона параллелограмма,
b - сторона маленького квадрата,
b - сторона маленького треугольника,
2b - основание среднего треугольника
2b - боковое ребро большого треугольника.
Посчитаем периметры отдельных фигур:
1) периметр большого треугольника:
2а + 2b + 2b = 2a + 4b
2) периметр среднего треугольника:
а + а + 2b = 2a + 2b
3) периметр маленького треугольника:
b + b + a = 2b + a
4) периметр маленького квадрата:
4b
5) периметр параллелограмма:
2а + 2b.
Теперь рассмотрим сложную фигуру.
Итак:
1) слева внизу большой треугольник, из периметра которого надо исключить меньшую сторону параллелограмма:
2а + 4b - b = 2a + 3b
2) на основании большого треугольника расположены параллелограмм, из которого имеют значение только две стороны а и b, и маленький треугольник, из которого имеет значение только боковая сторона b
a + b + b = a + 2b
3) из маленького квадрата в центре фигуры имеет значение только две стороны b:
Но поскольку заданная сложная фигура симметрична, несмотря на то, что ее левая и правая стороны сложены из разных фигур, мы можем учесть только одну сторону маленького квадрата b, найти периметр половины сложной фигуры и умножить на 2.
Найдем периметр сложной фигуры:
1) 2а + 3b + a + 2b + b = 3a + 6b = 3(a + 2b) - полупериметр сложной фигуры.
2) 2 • 3(a + 2b) = 6(a + 2b) или 6а + 12b
ответ: 6(a + 2b) или 6а + 12b.
Пошаговое объяснение:
По формуле нахождения определённого члена:
C(k; n) ·a^(n-k) ·b^k, где
С- число сочетаний из n (показатель степени) по k (порядковый номер члена разложения, который берётся на единицу меньше находимого;
a; b - аргументы выражения.
а) 3-й член разложения (a+1)⁸:
C₈²·a⁸⁻²·1²=8!/(2!·(8-2)!) ·a⁶=8!/(2!·6!) ·a⁶=(7·8)/(1·2) ·a⁶=7·4a⁶=28a⁶
б) 6-й член разложения (1-2b)²¹:
C₂₁⁵·1²¹⁻⁵·(-2b)⁵=21!/(5!·16!) ·1¹⁶·(-32b⁵)=20349·(-32b⁵)=-651168b⁵
в) 9-й член разложения (скорее всего такое (√z +z)¹⁰):
С₁₀⁸·(√z)¹⁰⁻⁸+z⁸=10!/(8!·2!) ·(√z)²·z⁸=45z¹⁺⁸=45z⁹