модерн- художественное направление в искусстве, наиболее распространённое в последней декаде XIX — начале XX века (до начала Первой мировой войны). Его отличительными особенностями является отказ от прямых линий и углов в пользу более естественных, «природных» линий, интерес к новым технологиям (например в архитектуре), расцвет прикладного искусства.Модерн стремился сочетать художественные и утилитарные функции создаваемых произведений, вовлечь в сферу прекрасного все сферы деятельности человека.
Привести к простейшему виду уравнение x2 + 2y2 - 5x + 4y - 6 = 0. Решение.Соберем члены уравнения, содержащие одну и ту же переменную величину, и получим(x2 - 5x) + (2y2 + 4y) - 6 = 0.Из второй скобки вынесем коэффициент при y2, после чего предыдущее уравнение примет вид(x2 - 5x) + 2(y2 + 2y) - 6 = 0.В каждой из скобок выделим полный квадрат и получимилиоткуда следует, что (A)Произведем теперь такую замену: положим, чтоПроизведенная замена представляет собой не что иное, как преобразование координат всех точек плоскости параллельным переносом координатных осей без изменения их направления. Сравнение последних соотношений с формуламипоказывает, что новое начало координат находится в точке , а уравнение (A) принимает видРазделив обе части этого уравнения на , получим канонический (простейший) вид данного уравненияЗаданное уравнение определяет эллипс с полуосями , центр которого находится в первоначальной системе координат в точке . Таким образом, упрощение уравнения этой линии достигнуто параллельным переносом начала координат в ее центр.
Решение.Соберем члены уравнения, содержащие одну и ту же переменную величину, и получим(x2 - 5x) + (2y2 + 4y) - 6 = 0.Из второй скобки вынесем коэффициент при y2, после чего предыдущее уравнение примет вид(x2 - 5x) + 2(y2 + 2y) - 6 = 0.В каждой из скобок выделим полный квадрат и получимилиоткуда следует, что (A)Произведем теперь такую замену: положим, чтоПроизведенная замена представляет собой не что иное, как преобразование координат всех точек плоскости параллельным переносом координатных осей без изменения их направления. Сравнение последних соотношений с формуламипоказывает, что новое начало координат находится в точке , а уравнение (A) принимает видРазделив обе части этого уравнения на , получим канонический (простейший) вид данного уравненияЗаданное уравнение определяет эллипс с полуосями , центр которого находится в первоначальной системе координат в точке . Таким образом, упрощение уравнения этой линии достигнуто параллельным переносом начала координат в ее центр.