В координатной плоскости отметьте точки А(-4;4),В(6;-1),С(2:5),Д(-6;1).А)постройте прямую АВ и отрезок СД. б) запишите координаты точки пересечения прямой АВ и отрезка СД. С) запишите координаты точки пересечения прямой АВ с осью абсцисс. Д) запишите координаты точки пересечения отрезка СД с осью ординат СОЧ
Точка М является серединой боковой стороны АВ трапеции АВСД. Найдите площадь трапеции. если площадь. треугольника МСД равна 34.
Сделаем рисунок. Проведем МН параллельно основаниям трапеции. МН - средняя линия трапеции и делит СН пополам. МН - медиана треугольника СМД. Медиана треугольника делит его на два равновеликих. ⇒ S △ МСН=S △МДН=34:2=17 Продолжим прямую ВС за пределы трапеции. Через точку М проведем параллельно СД прямую до пересечения с прямой ВС в точке К, с АД - в точке Е. Тогда МКСН и МЕДН - равные параллелограммы - их противоположные стороны равны и параллельны. Диагональ параллелограмма делит его площадь пополам. Площадь МКС=площади МСН=17, а S КМНС=S МЕДН=17*2=34 В треугольниках МКВ и МАЕ имется две равные по условию стороны: АМ=МВ Углы при М равны как вертикальные, углы при В и А равны как накрестлежащие при параллельных прямых. Треугольник МКВ=треугольнику МАЕ по стороне и двум прилежащим к ней углам. Следовательно,S МКСН=S МВСН+S △ АМЕ, а S КСДЕ =S трапеции АВСД. S (АВСД=34*2=68 ( ед. площади)..
Сделаем рисунок.
Проведем МН параллельно основаниям трапеции.
МН - средняя линия трапеции и делит СН пополам.
МН - медиана треугольника СМД.
Медиана треугольника делит его на два равновеликих. ⇒
S △ МСН=S △МДН=34:2=17
Продолжим прямую ВС за пределы трапеции.
Через точку М проведем параллельно СД прямую до пересечения с прямой ВС в точке К, с АД - в точке Е.
Тогда МКСН и МЕДН - равные параллелограммы - их противоположные стороны равны и параллельны.
Диагональ параллелограмма делит его площадь пополам.
Площадь МКС=площади МСН=17, а
S КМНС=S МЕДН=17*2=34
В треугольниках МКВ и МАЕ имется две равные по условию стороны: АМ=МВ
Углы при М равны как вертикальные, углы при В и А равны как накрестлежащие при параллельных прямых.
Треугольник МКВ=треугольнику МАЕ по стороне и двум прилежащим к ней углам.
Следовательно,S МКСН=S МВСН+S △ АМЕ,
а S КСДЕ =S трапеции АВСД.
S (АВСД=34*2=68 ( ед. площади)..