В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
allteennkka1985
allteennkka1985
06.02.2022 04:58 •  Математика

В координатной плоскости построить фигуру, состоящую из точек ( от 10 до 20), попарно соединенных отрезками и записать координаты этих точек.

Показать ответ
Ответ:
79521312181
79521312181
30.05.2020 09:28

1.Нахождение области определения функции

Определение интервалов, на которых функция существует.

!!! Очень подробно об области определения функций и примеры нахождения области определения тут.

2.Нули функции

Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.

3.Четность, нечетность функции

Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.  

4.Промежутки знакопостоянства

Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.  

5. Промежутки возрастания и убывания функции.

Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.

6. Выпуклость, вогнутость.

Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.  

7. Наклонные асимптоты.

 

 

Пример исследования функции и построения графика №1

Исследовать функцию средствами дифференциального исчисления и построить ее график.

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
asdf2033
asdf2033
30.05.2023 14:39

Задание 1

Вы не поставили знаки возведения в степень (не забывайте их, иначе выражение совсем непонятно- приходится гадать, что за действие там было- умножение или возведение в степень).

Вот это выражение со знаками возведения в степень:

(x^2 - 6x + 9) + (5y - 3)^2 + (4z + 5)^4 = 0

А записав это же в поле уравнение (кнопка $\sqrt{\rm x} ), получим как на бумаге:

$(x^2 - 6x + 9) + (5y - 3)^2 + (4z + 5)^4 = 0

Решаем:

$(x - 3)^2 + (5y - 3)^2 + (4z + 5)^4 = 0

Отсюда получаем, что все три слагаемых должны быть равны нулю:

$(x - 3)^2 = 0 \ \ \ \to \ \ \ x - 3 = 0 \ \ \ \to \ \ \ x = 3

$(5y - 3)^2 = 0 \ \ \ \to \ \ \ 5y - 3 = 0 \ \ \ \to \ \ \ y = \frac{3}{5}

$(4z + 5)^4 = 0 \ \ \ \to \ \ \ 4z + 5 = 0 \ \ \ \to \ \ \ z = -\frac{5}{4}

Считаем заданное выражение:

$2x+10y-4z=2\cdot3 + 10\cdot \frac{3}{5} - 4\cdot\!\left(-\frac{5}{4}\right) = 6 + 6 + 5 = 17

ответ: вариант 4

Задание 2

В тексте задачи опечатка- сравнивается время второго пешехода со вторым же. Если предположить, что правильный текст такой: "За сколько времени первый расстояние АВ", то имеем вот что:

Обозначим величины:

S - расстояние от A до B

t1 - время в пути первого пешехода

t2 - время в пути второго пешехода

v1 - скорость первого пешехода

v2 - скорость второго пешехода

Считаем что они двигались равномерно (не меняя скорости).

Первый и второй до точки встречи шли 3 часа. За это время они суммарно полное расстояние S. Запишем это, вычисляя путь каждого через его скорость и время (3 ч):

$\rm S=3v_1+3v_2

Запишем скорости пешеходов через путь и время каждого и подставим в уравнение выше.

$\rm v_1=\frac{S}{t_1}

$\rm v_2=\frac{S}{t_2}

$\rm S=3\frac{S}{t_1}+3\frac{S}{t_2}

Т.к.  $\rm S\ne0, то можем поделить обе части уравнения на $\rm S :

$\rm 1=\frac{3}{t_1}+\frac{3}{t_2}

Выразим время t2 через t1 (они связаны по условиям задачи), и подставим это выражение вместо t2 в уравнение:

$\rm t_2=t_1-2{,}5

$\rm 1=\frac{3}{t_1}+\frac{3}{t_1-2,\hspace{-0.5mm}5}

Умножим обе части уравнения на $\rm 2t_1(t_1-2{,}5) :

(при этом нужно указать, что  $\rm t_1\ne0;\ \ t_1\ne2{,}5 )

$\rm 2t_1(t_1-2{,}5)=6(t_1-2{,}5)+6t_1

$\rm 2t_1^2-5t_1=6t_1-15+6t_1

$\rm 2t_1^2-17t_1+15=0

$t_{1.1}=\frac{17+\sqrt{(-17)^2-4\cdot2\cdot15}}{2\cdot2}=\frac{17+13}{4}=7{,}5   (ч)

$t_{1.2}=\frac{17-\sqrt{(-17)^2-4\cdot2\cdot15}}{2\cdot2}=\frac{17-13}{4}=1    (ч)

Значение 1 ч  не подходит по условиям задачи (оно меньше 3 ч).

А значение 7,5 ч - подходит по условиям задачи, не попадает на указанные ограничения (не равно 0 или 2,5), но отсутствует среди вариантов ответа (если только вы первый вариант не записали с очередной ошибкой- 7 вместо 7,5).

То есть, в таком виде задачи, ответ будет- нет верных вариантов.

Решение будет подходить под эти варианты, только если предположить, что в тексте задачи вообще всё перепутано, и правильный текст на самом деле звучит как то так:

"Два пешехода вышли одновременно навстречу друг другу – первый из пункта А, второй из пункта В. Они встретились через три часа. За сколько времени первый расстояние АВ, если он пришёл в пункт В на 2,5 часа раньше, чем второй пришёл в пункт А."

В этом случае получим такое решение:

$\rm S=3v_1+3v_2

$\rm v_1=\frac{S}{t_1}

$\rm v_2=\frac{S}{t_2}

$\rm S=3\frac{S}{t_1}+3\frac{S}{t_2}

Т.к.  $\rm S\ne0, то можем поделить обе части уравнения на $\rm S :

$\rm 1=\frac{3}{t_1}+\frac{3}{t_2}

$\rm t_2=t_1+2{,}5

$\rm 1=\frac{3}{t_1}+\frac{3}{t_1+2,\hspace{-0.5mm}5}

Умножим обе части уравнения на $\rm 2t_1(t_1+2{,}5) :

(при этом нужно указать, что  $\rm t_1\ne0;\ \ t_1\ne-2{,}5 )

$\rm 2t_1(t_1+2{,}5)=6(t_1+2{,}5)+6t_1

$\rm 2t_1^2+5t_1=6t_1+15+6t_1

$\rm 2t_1^2-7t_1-15=0

$t_{1.1}=\frac{7+\sqrt{(-7)^2-4\cdot2\cdot(-15)}}{2\cdot2}=\frac{7+13}{4}=5   (ч)

$t_{1.2}=\frac{7-\sqrt{(-7)^2-4\cdot2\cdot(-15)}}{2\cdot2}=\frac{7-13}{4}=-1,\hspace{-0.3mm}5    (ч)

Значение -1,5 ч  не подходит по условиям задачи (здесь отрицательное время не имеет смысла).

Значение 5 ч  -подходит по условиям задачи, не попадает на указанные ограничения (не равно 0 или -2,5) и присутствует среди вариантов ответа.

ответ: вариант 3

ВЫВОД: сверьте текст задания с исходным- если при наборе действительно были допущены указанные мной ошибки, то вариант решения я привёл выше (и, в следующий раз проверяйте текст перед отправкой задания).

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота