В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
marinamarinam9
marinamarinam9
07.07.2022 02:40 •  Математика

В квадрат, сторона которого равна 56 см, вписан другой квадрат, вершины которого являются серединами сторон первого квадрата, в этот квадрат вписан таким же образом другой квадрат, и т. д. (см. рис.).

Вычисли сумму площадей всех квадратов.

Сумма площадей всех квадратов равна...

Дополнительные во сторона третьего по порядку квадрата равна
см.
2. Площадь наибольшего квадрата равна...
3. Знаменатель равен
4. Выбери, какую из формул надо использовать в решении задачи:
(b1+b2)q2
b11−q
b1(1−qn)1−q
b11−q2

Показать ответ
Ответ:
HACT91
HACT91
01.05.2020 14:30

Выясним, составляют ли площади квадратов бесконечно убывающую геометрическую прогрессию.

 

Если сторона наибольшего квадрата равна 56 см, то сторона вписанного в него квадрата равна 282√ см, следующая  28 см, ...

 

Если сторона квадрата равна a, то его диагональ равна a2√.

Сторона вписанного квадрата равна половине диагонали...

Площадь квадрата равна  a2.

 

Площади квадратов образуют последовательность:  562; (28⋅2√)2; 282;...

или  3136;  1568;  784; ...

 

Проверим, является ли эта последовательность бесконечно убывающей геометрической прогрессией.

b2b1=15683136=0,5b3b2=7841568=0,50,5<1,q=0,5  

 

Используем формулу суммы бесконечно убывающей геометрической прогрессии: S∞=b11−q=31361−0,5=31360,5=6272 см2

 

Сумма площадей всех квадратов равна 6272 см2

Пошаговое объяснение:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота