В начале четвёртого года страхования Иван заплатил за полис 20009 руб. Во сколько рублей обойдётся Ивану полис на пятый год, если базовый тариф и значения других коэффициентов (кроме КБМ и КВС) не изменятся?
Разделив обе части уравнения на y, получим уравнение dy/y=tg(x)*dx, или dy/y=sin(x)*dx/cos(x), или dy/y=-d[cos(x)]/cos(x). Интегрируя, находим ln/y/=-ln/cos(x)/+ln/C/, где C - произвольная, но не равная нулю постоянная. Отсюда общее решение уравнения y=C/cos(x). Используя условие y(0)=4, получаем уравнение 4=C/1, откуда C=4. Отсюда искомое частное решение уравнения y=4/cos(x). Проверка: y'=4*sin(x)/cos²(x), dy=4*sin(x)*dx/cos²(x), y*tg(x)*dx=4*sin(x)*dx/cos²(x), так что dy=y*tg(x)*dx - следовательно, найденное решение удовлетворяет дифференциальному уравнению. Полагая x=0, находим y=4/1=4, так что решение удовлетворяет и условию y(0)=4. Следовательно, решение найдено верно.
ответ: y=4/cos(x).
Пошаговое объяснение:
Разделив обе части уравнения на y, получим уравнение dy/y=tg(x)*dx, или dy/y=sin(x)*dx/cos(x), или dy/y=-d[cos(x)]/cos(x). Интегрируя, находим ln/y/=-ln/cos(x)/+ln/C/, где C - произвольная, но не равная нулю постоянная. Отсюда общее решение уравнения y=C/cos(x). Используя условие y(0)=4, получаем уравнение 4=C/1, откуда C=4. Отсюда искомое частное решение уравнения y=4/cos(x). Проверка: y'=4*sin(x)/cos²(x), dy=4*sin(x)*dx/cos²(x), y*tg(x)*dx=4*sin(x)*dx/cos²(x), так что dy=y*tg(x)*dx - следовательно, найденное решение удовлетворяет дифференциальному уравнению. Полагая x=0, находим y=4/1=4, так что решение удовлетворяет и условию y(0)=4. Следовательно, решение найдено верно.
НОД (220; 360) = 20.
Как найти наибольший общий делитель для 220 и 360
Разложим на простые множители 220
220 = 2 • 2 • 5 • 11
Разложим на простые множители 360
360 = 2 • 2 • 2 • 3 • 3 • 5
Выберем одинаковые простые множители в обоих числах.
2 , 2 , 5
Находим произведение одинаковых простых множителей и записываем ответ
НОД (220; 360) = 2 • 2 • 5 = 20
НОК (Наименьшее общее кратное) 220 и 360
Наименьшим общим кратным (НОК) 220 и 360 называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел (220 и 360).
НОК (220, 360) = 3960
Как найти наименьшее общее кратное для 220 и 360
Разложим на простые множители 220
220 = 2 • 2 • 5 • 11
Разложим на простые множители 360
360 = 2 • 2 • 2 • 3 • 3 • 5
Выберем в разложении меньшего числа (220) множители, которые не вошли в разложение
11
Добавим эти множители в разложение бóльшего числа
2 , 2 , 2 , 3 , 3 , 5 , 11
Полученное произведение запишем в ответ.
НОК (220, 360) = 2 • 2 • 2 • 3 • 3 • 5 • 11 = 3960