Скрорость теплохода примем за x(км/час), а скорость течения - за y(км/час). Тогда скорость теплохода по течению будет (x+y)(км/час), а скорость теплохода против течения (x-y)(км/час). Расстояние равняется произведению скорости на время, следовательно, можем составить систему уравнений:
В первом уравнении раскрываем скобки, второе же уравнение умножаем на 2:
Из второго уравнения выражаем y и подставляем в первое:
Далее, решаем первое уравнение относительно x:
Таким образом, собственная скорость теплохода равняется 55 км/час, а скорость течения - 5 км/час. Можно сделать проверку, подставив найденные скорости в изначальные уравнения.
z = (x-2)^2+2*y^2-10
1. Найдем частные производные.
На фото
2. Решим систему уравнений.
2*x-4 = 0
4*y = 0
Получим:
а) Из первого уравнения выражаем x и подставляем во второе уравнение:
x = 2
4*y = 0
Откуда y = 0
Данные значения y подставляем в выражение для x. Получаем: x = 2
Количество критических точек равно 1.
M1(2;0)
3. Найдем частные производные второго порядка.
На фото
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(2;0)
На фото
AC - B2 = 8 > 0 и A > 0 , то в точке M1(2;0) имеется минимум z(2;0) = -10
Вывод: В точке M1(2;0) имеется минимум z(2;0) = -10;
Скрорость теплохода примем за x(км/час), а скорость течения - за y(км/час). Тогда скорость теплохода по течению будет (x+y)(км/час), а скорость теплохода против течения (x-y)(км/час). Расстояние равняется произведению скорости на время, следовательно, можем составить систему уравнений:
В первом уравнении раскрываем скобки, второе же уравнение умножаем на 2:
Из второго уравнения выражаем y и подставляем в первое:
Далее, решаем первое уравнение относительно x:
Таким образом, собственная скорость теплохода равняется 55 км/час, а скорость течения - 5 км/час. Можно сделать проверку, подставив найденные скорости в изначальные уравнения.