В основании пирамиды лежит прямоугольный треугольник с катетами 15 и 15√3. Каждое боковое ребро пирамиды наклонено к плоскости основания под углом arctg2√3 / 225. Найдите объем пирамиды
1) ΔABC прямоугольный AB, BC катеты, Sосн=1/2*AB*BC
2) Высота пирамиды "h", опущенная из вершины D, в точку "0", причем "0" является точкой центром описанной окружности ΔАВС, то есть, точкой пересечения срединных перпендикуляров, проведенных к сторонам ΔАВС.(в часном случае ΔАВС прямоугольный, и "О" лежит на гипотенузе АС )
Δ ΔОЕВ - прямоугольный , с катетами "ОЕ" "ОМ" и дпины их равны половине соответствующих катетов ΔАВС OB²=OE²+OM²=1/4(AB²+BC²)
Из ΔDBO Прямоугольный, известен катет и прилежащий угол,
Пошаговое объяснение:
ДАНО: ПИРАМИДА
ΔАВС- прямоугольный
АВ=15, ВС=15√3
∠a =arctg(2√3)/225
НАЙТИ: Vпирамиды
V= 1/3 Sосн*h
1) ΔABC прямоугольный AB, BC катеты, Sосн=1/2*AB*BC
2) Высота пирамиды "h", опущенная из вершины D, в точку "0", причем "0" является точкой центром описанной окружности ΔАВС, то есть, точкой пересечения срединных перпендикуляров, проведенных к сторонам ΔАВС.(в часном случае ΔАВС прямоугольный, и "О" лежит на гипотенузе АС )
Δ ΔОЕВ - прямоугольный , с катетами "ОЕ" "ОМ" и дпины их равны половине соответствующих катетов ΔАВС OB²=OE²+OM²=1/4(AB²+BC²)
Из ΔDBO Прямоугольный, известен катет и прилежащий угол,
∠a нам дан. tg∠a= OE/OB OE=OB/tg∠a
рабочая формула будет иметь вид
V=1/3 *1/2*AB*BC* h
как то так
калькулятор в