В параллелограмме STRK угол R равен 138 градусов. Точка U лежит на стороне SK. Угол RUS равен 69 градусов. Доказать, что треугольник RUS равнобедренный. Найти RT, если периметр параллелограмма равен 56 см, отрезок SU равен 10см.
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
Площадь квадрата:
S₁ = a² (м²)
Площадь двух кругов:
S₂ = 2πa²/4 = πa²/2 (м²)
Тогда:
S = S₁+S₂ = a² + πa²/2
1000 = a² + 1,5a²
2,5a² = 1000
a² = 400
a = 20 (м) - длина стороны квадрата
R = a/2 = 20:2 = 10 (м) - радиус кругов
Длина забора: L = 2*2πR = 4*3*10 = 120 (м)
Пошаговое объяснение ПОСТАВЬ ЛАЙК
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=np,D(X)=npq,σ(X)=npq−−−√.
Пошаговое объяснение: