Когда я смотрю на звёзды,я думаю о бесконечности нашей вселенной.ведь,это удивииельно.те звезды,которые мы знаем - всего 0.0005% из всех существующих. меня это удивляет и вдохновляет жить. никогда не видел звезду..надеюсь никогда не увижу.да,это может быть и красиво..но,это может быть и тот самый метеорит,который движется в направлении к земле. и эта "звезда" будет первой и последней в моей жизни. "не суй свой нос в чужой вопрос." потому что я считаю так. каждый человек имеет свой уникальный характер. ты можешь попытаться решить его проблему или предлагать варианты..и можешь случайно его обидеть одним из решений. больше всего мой характер схож с кар-карычем из смешариков. я и он,оба необычные личности. любим классику и спокойствие. но,иногда можем станцевать такой "".. -что в шоке будут абсолютно все. говорят, удмуртия - край родниковый.для меня она не минеральная жемчужина,а сильная и многообразная земля.это то место,где удмуртов за 17 лет исчезло более 40%. и на удмуртском языке сейчас говорят всего 17% населения. удмуртия - это необъятные леса и рукотворный ижевский пруд. это добрые бабушки и дедушки. большинство людей, здесь отзывчивые и доброжелательные. для меня настоящим открытием стала новость о "взломщиках днк". это люди,которые испытывают человеческие вмешательства в хромосомы на себе. и спустя уже год - чувствуют себя отлично,и даже лучше. вот это и есть будущее. дорогой,терпеливый и молчащий народ. надеюсь,что в ваше время вы живете чтобы жить. а не как мы сейчас - работаем,чтобы жить. надеюсь,что терроризм полностью уничтожен,а войн больше нет. каждая девушка должна сочетать в себе такие качества как: дружелюбие,преданность и вкус в одежде! куда же без моды? самым смелым решением в моей жизни было признание моей маме о том,что я узнал об изменах моего отца с другими женщинами.оно значило для меня все. либо счастливая семья,либо мои три ближайшие цели это - 1)работать там,где захочет душа. 2)прочитать собрание сочинений лермонтова. 3)в будущем,заработать капитал и открыть бакалею. когда человек становится взрослым,он теряет своё самое нужное и так недостающее взрослым качество как - беззаботность. я бы хотел себе вернуть незнание относительно многих вопросов. потому что чаще всего,правда - душещипательная.
Разметим весь лист параллельными линиями с шагом 1 см в одном и другом перпендикулярных направлениях, начиная от края, так чтобы образовалось ровно 100 одинаковых квадратиков, каждый площадью в один квадратный сантиметр. Назовём их для удобства дальнейших рассуждений – «ячейками».
Тогда все складки, всех описываемых в условии загибаний, будут совпадать с этими линиями (толщину бумаги мы не учитываем, считая её, как бы, бесконечно тонкой).
Заметим, при этом, что при любом (!) загибании, та ячейка, которая находится в угловом квадратике (верхнем правом) – непременно снова перейдёт в новый угловой многослойный квадратик (верхний правый).
Будем согнутый лист на любой стадии называть «фигурой». Выделим у этой «фигуры» некоторые особые зоны (всего 4 зоны):
1) [один] «угловой квадратик» (о нём мы уже упоминали, верхний правый);
2) [2 штуки] «краевые полосы» – многослойные полосы, шириной в 1 см, образующиеся сверху и справа после нескольких загибании краёв фигуры («угловой квадратик» мы рассматриваем отдельно, а поэтому мы его НЕ включаем в «краевые полосы»)
3) [один] «однослойный остаток».
При каждом загибании фигуры, край, который заворачивают внутрь, прикладывается к листу, и толщина «краевой полосы» увеличивается на один слой листа, а так же заметно увеличивается толщина «углового квадратика». При этом важно понимать, что толщина другой «краевой полосы» не увеличивается.
Когда после всех загибаний получилась «фигура» в виде конечного квадрата 4 на 4 см, часть тонкого однослойного листа, т.е. «однослойный остаток», осталась только в пределах квадрата 3 на 3 см, «огороженного» сверху и справа сантиметровой шириной «краевых полос» и «углового квадратика».
Ширина «краевых полос» всегда равна 1 сантиметру, а их длина в конечном положении будет равна 3 (трём) сантиметрам.
Поскольку 10-сантиметровая сторона исходного листа «ужалась» до стороны фигуры, размером в 4 см, то значит, в совокупности, с каждой стороны было загнуто по 6 сантиметра листа. А именно: 6 сантиметров справа и 6 сантиметров сверху. Значит в «краевых полосах» сосредоточено 6 дополнительных (!) слоя листа, а значит, всего в «краевых полосах» сосредоточено 7 слоёв листа.
Площадь «краевой полосы» равна трём квадратным сантиметрам, и при этом их 2 штуки, и в каждой по 7 слоёв исходного листа, значит всего во всех краевых полосах сосредоточено 3*7*2 = 42 «ячейки».
Площадь «однослойного остатка», размером 3x3 см – равна 9 квадратным сантиметрам и содержит в себе 9 «ячеек».
Всего было 100 «ячеек». Из них 42 + 9 = 51 «ячейку» мы уже нашли. Остальные 49 «ячеек» сосредоточены в «угловом квадратике». А значит в «угловом квадратике» будет сосредоточено 49 слоёв исходного листа.
Если проткнуть шилом такой «угловой квадратик», а потом распаковать «фигуру» обратно в исходное состояние, то мы обнаружим на развёрнутом листе 49 дырок.
Для того чтобы снять все сомнения, просто проведём чистый, "незамутнённый логикой" эксперимент и убедимся в правильности приведённых рассуждений. Результаты эксперимента представлены на фотографии с 49-тью дырками.
лист загнули справа
@
Разметим весь лист параллельными линиями с шагом 1 см в одном и другом перпендикулярных направлениях, начиная от края, так чтобы образовалось ровно 100 одинаковых квадратиков, каждый площадью в один квадратный сантиметр. Назовём их для удобства дальнейших рассуждений – «ячейками».
Тогда все складки, всех описываемых в условии загибаний, будут совпадать с этими линиями (толщину бумаги мы не учитываем, считая её, как бы, бесконечно тонкой).
Заметим, при этом, что при любом (!) загибании, та ячейка, которая находится в угловом квадратике (верхнем правом) – непременно снова перейдёт в новый угловой многослойный квадратик (верхний правый).
Будем согнутый лист на любой стадии называть «фигурой».
Выделим у этой «фигуры» некоторые особые зоны (всего 4 зоны):
1) [один] «угловой квадратик» (о нём мы уже упоминали, верхний правый);
2) [2 штуки] «краевые полосы» – многослойные полосы, шириной в 1 см, образующиеся сверху и справа после нескольких загибании краёв фигуры («угловой квадратик» мы рассматриваем отдельно, а поэтому мы его НЕ включаем в «краевые полосы»)
3) [один] «однослойный остаток».
При каждом загибании фигуры, край, который заворачивают внутрь, прикладывается к листу, и толщина «краевой полосы» увеличивается на один слой листа, а так же заметно увеличивается толщина «углового квадратика». При этом важно понимать, что толщина другой «краевой полосы» не увеличивается.
Когда после всех загибаний получилась «фигура» в виде конечного квадрата 4 на 4 см, часть тонкого однослойного листа, т.е. «однослойный остаток», осталась только в пределах квадрата 3 на 3 см, «огороженного» сверху и справа сантиметровой шириной «краевых полос» и «углового квадратика».
Ширина «краевых полос» всегда равна 1 сантиметру, а их длина в конечном положении будет равна 3 (трём) сантиметрам.
Поскольку 10-сантиметровая сторона исходного листа «ужалась» до стороны фигуры, размером в 4 см, то значит, в совокупности, с каждой стороны было загнуто по 6 сантиметра листа. А именно: 6 сантиметров справа и 6 сантиметров сверху. Значит в «краевых полосах» сосредоточено 6 дополнительных (!) слоя листа, а значит, всего в «краевых полосах» сосредоточено 7 слоёв листа.
Площадь «краевой полосы» равна трём квадратным сантиметрам, и при этом их 2 штуки, и в каждой по 7 слоёв исходного листа, значит всего во всех краевых полосах сосредоточено 3*7*2 = 42 «ячейки».
Площадь «однослойного остатка», размером 3x3 см – равна 9 квадратным сантиметрам и содержит в себе 9 «ячеек».
Всего было 100 «ячеек». Из них 42 + 9 = 51 «ячейку» мы уже нашли. Остальные 49 «ячеек» сосредоточены в «угловом квадратике». А значит в «угловом квадратике» будет сосредоточено 49 слоёв исходного листа.
Если проткнуть шилом такой «угловой квадратик», а потом распаковать «фигуру» обратно в исходное состояние, то мы обнаружим на развёрнутом листе 49 дырок.
Для того чтобы снять все сомнения, просто проведём чистый, "незамутнённый логикой" эксперимент и убедимся в правильности приведённых рассуждений. Результаты эксперимента представлены на фотографии с 49-тью дырками.
О т в е т : 49 дырок.