В правильной четырёхугольной пирамиде FABCD с вершиной F сторона основания равна 9 корень из { 2}, боковое ребро равно 15. Точка N делит высоту пирамиды в отношении 2 : 1, считая от вершины F. Через точки B и N параллельно прямой AC проведена плоскость γ, пересекающая ребро DF в точке M. а) Докажите, что точка M — середина отрезка DF.
б) Найдите площадь сечения пирамиды плоскостью γ.
Математика, 15.04.2020 11:47, ащна
У кондуктора трамвая для расчёта с пассажирами было112 \монет достоинством 10 \руб. и 5 \руб. на общую сумму 695 \112 монет достоинством10 руб. и5 руб. наобщую сумму695 руб. Сколько монет каждого достоинства было у кондуктора?
С какого из данных уравнений можно решить эту задачу?
10 (112-x) + 5x = 695\10⋅(112−x)+5x=695;
695 - 5x = 10x.\695−5x=10x.
Запиши, что обозначено переменнойxx в выбранном тобой уравнении.
Реши уравнение и запиши ответ задачи.
Составь для решения задачи другое уравнение.
Реши задачу с составленного тобой уравнения и сравни полученные ответы.
Пошаговое объяснение: