В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ninaemelyanova2
ninaemelyanova2
29.08.2020 01:34 •  Математика

В правильной четырехугольной пирамиде сторона основания равна 14 см, а длина бокового ребра 10 см. Определите площадь сечения, проходящего через два боковых ребра.

Показать ответ
Ответ:
lampec1
lampec1
18.01.2024 07:18
Привет! Рассмотрим эту задачу по шагам.

Шаг 1: Понимание задачи
Мы должны определить площадь сечения, которое проходит через два боковых ребра правильной четырехугольной пирамиды. Чтобы решить эту задачу, нам нужно знать, как выглядит пирамида и какие формулы мы можем использовать для расчета площади сечения.

Шаг 2: Знание фигуры
Правильная четырехугольная пирамида состоит из основания в форме квадрата и четырех боковых треугольников, которые встречаются в вершине. Основание квадрата имеет сторону 14 см, а боковое ребро имеет длину 10 см.

Шаг 3: Расчет площади сечения
Мы должны найти площадь сечения, проходящего через два боковых ребра. Подумайте о том, как это выглядит в пирамиде: в результате разреза мы получим два треугольника.

Один треугольник будет равнобедренным, так как он образуется путем разреза одного бокового ребра пирамиды и пересечения с плоскостью, проходящей через другое боковое ребро. Равнобедренный треугольник будет иметь два равных угла и две равные стороны.

Шаг 4: Применение формулы для площади равнобедренного треугольника
Формула для площади равнобедренного треугольника - это половина произведения длины основания треугольника и высоты, опущенной из его вершины до основания.

В нашем случае, длина основания треугольника равна длине бокового ребра 10 см. Чтобы узнать высоту треугольника, мы можем использовать теорему Пифагора.

Шаг 5: Знание теоремы Пифагора
Теорема Пифагора говорит, что для прямоугольного треугольника квадрат гипотенузы (самая длинная сторона) равен сумме квадратов катетов (двух других сторон).

Шаг 6: Применение теоремы Пифагора
У нас есть равнобедренный треугольник, и нам нужно найти его высоту. Мы можем использовать теорему Пифагора, зная длину основания треугольника (10 см) и длину бокового ребра пирамиды (14 см).

Применяя теорему Пифагора, мы можем записать:
(0.5 * высота)^2 + основание^2 = боковое ребро^2

(0.5 * высота)^2 + 10^2 = 14^2

(0.5 * высота)^2 + 100 = 196

(0.5 * высота)^2 = 196 - 100

(0.5 * высота)^2 = 96

0.25 * высота^2 = 96

высота^2 = 96 / 0.25

высота^2 = 384

высота = √384

высота ≈ 19.6 см

Шаг 7: Расчет площади сечения
Теперь, когда у нас есть значение высоты треугольника, мы можем использовать формулу для площади равнобедренного треугольника.

Площадь равнобедренного треугольника = 0.5 * (длина основания) * высота

Площадь равнобедренного треугольника = 0.5 * 10 * 19.6

Площадь равнобедренного треугольника ≈ 98 см²

Таким образом, площадь сечения, проходящего через два боковых ребра, составляет около 98 см².
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота