в прямоугольном треугольнике ABC с прямым углом C проведена высота CH из прямого угла . проекции катетов на гипотенузу равны 5 см и 4 см соответственно. найти высоту треугольника ABC и его площа
Астероиды - небольшие небесные тела, размером от нескольких метров до тысячи километров. Астероиды состоят из железа, никеля и различных каменистых пород. По составу они близки к планетам земной группы. Большинство астероидов движутся в так называемом поясе астероидов между орбитами Марса и Юпитера. Юпитер возмущает их движения. В результате этого, астероиды сталкиваются друг с другом, меняют свои орбиты.
Кометы... Эти небесные тела получили свое название от греческого слова "кометос", что значит "волосатая". Долгое время люди ничего не знали о природе комет. Их появление было так внезапно и загадочно, а вид так необычен, что суеверно настроенные люди видели в них предвестников всяких бед и несчастий; войны, чумы, холеры, голода. В XVI в. астроном Тихо Браге, а за ним многие другие исследователи выяснили, что кометы находятся далеко за пределами земной атмосферы и даже гораздо дальше, чем спутник Земли - Луна; что они движутся в пространстве примерно на таком же большом расстоянии от Земли, как и планеты.
Метеориты - каменные или железные тела, падающие на Землю из межпланетного пространства; представляют собой остатки метеорных тел, не разрушившихся полностью при движении в атмосфере.
Внимание! Данные методы решения не учитывают ширину шва между плитками. Поэтому при выполнении строительных работ вам необходимо вносить соответствующую поправку, особенно при больших площадях покрытия.
Вариант решения №1 (для начальных классов).
Посчитаем длину дорожки из плитки, как если бы её выложили в одну ровную полоску. Для этого вначале отсечем из фигуры вертикальные полоски, так, как это показано на рис. 1.
Получаем длину вертикальных полосок:
12+8+4=24 (м)
Теперь подсчитаем длину оставшихся горизонтальных полосок. Т.к. ширина плитки равна 50 см, то очевидно, что от верхней и нижней полоски вертикальные полосы "отобрали" по 50+50=100 (см), т.е. 1 м
(см. рис. 2).
Тогда
длина горизонтальных полосок:
14-1+4+(14-4)-1 = 13+4+9 = 26 (м).
Суммарная длина полосы плитки равна
24+26=50 (м) = 5000 см
Тогда количество плитки для заполнения такой полосы равно:
5000:50=100 (шт.)
Вариант решения №2 (через площадь - универсальный метод).
Вычислим площадь полосы плитки Sд.. Для этого из площади наружного контура Sн. вычтем площадь внутреннего контура Sв.. Площади будем вычислять как сумму площадей двух прямоугольников, как это показано на рис 3.
Sн.=Sн₁.+Sн₂=12*10+8*4=152 (м²).
Аналогично вычислим площадь внутренней фигуры Sв. (см. рис. 4):
Sв.=Sв₁.+Sв₂=11*9+7*4=127 (м²).
Тогда площадь дорожки из плитки Sд. равна:
Sд.=Sн.-Sв.=152-127=25 (м²)
Тогда количество плиток можно найти, разделив площадь дорожки Sд. на площадь одной плитки Sп..
Sп. = 0,5*0,5=0,25 (м²)
Количество плитки равно:
Sд./Sп. =25/0,25=100 (шт.)
Вариант решения №3 (через периметр оси симметрии плитки).
Т.к. в нашем случае плитка - уникальная, самая симметричная из четырёхугольников фигура (квадрат) и по условию задания дан (косвенно) наружный периметр фигуры, выложенной плиткой, размером 50х50 см, то очевидно, что периметр, проведённый через оси вертикальных и горизонтальных полос будет отстоять от наружного контура на 0,25 м и равен (см. рис. 5):
Большинство астероидов движутся в так называемом поясе астероидов между орбитами Марса и Юпитера. Юпитер возмущает их движения. В результате этого, астероиды сталкиваются друг с другом, меняют свои орбиты.
Кометы... Эти небесные тела получили свое название от греческого слова "кометос", что значит "волосатая".
Долгое время люди ничего не знали о природе комет. Их появление было так внезапно и загадочно, а вид так необычен, что суеверно настроенные люди видели в них предвестников всяких бед и несчастий; войны, чумы, холеры, голода. В XVI в. астроном Тихо Браге, а за ним многие другие исследователи выяснили, что кометы находятся далеко за пределами земной атмосферы и даже гораздо дальше, чем спутник Земли - Луна; что они движутся в пространстве примерно на таком же большом расстоянии от Земли, как и планеты.
Метеориты - каменные или железные тела, падающие на Землю из межпланетного пространства; представляют собой остатки метеорных тел, не разрушившихся полностью при движении в атмосфере.
100 штук
Пошаговое объяснение:
Внимание! Данные методы решения не учитывают ширину шва между плитками. Поэтому при выполнении строительных работ вам необходимо вносить соответствующую поправку, особенно при больших площадях покрытия.
Вариант решения №1 (для начальных классов).
Посчитаем длину дорожки из плитки, как если бы её выложили в одну ровную полоску. Для этого вначале отсечем из фигуры вертикальные полоски, так, как это показано на рис. 1.
Получаем длину вертикальных полосок:
12+8+4=24 (м)
Теперь подсчитаем длину оставшихся горизонтальных полосок. Т.к. ширина плитки равна 50 см, то очевидно, что от верхней и нижней полоски вертикальные полосы "отобрали" по 50+50=100 (см), т.е. 1 м
(см. рис. 2).
Тогда
длина горизонтальных полосок:
14-1+4+(14-4)-1 = 13+4+9 = 26 (м).
Суммарная длина полосы плитки равна
24+26=50 (м) = 5000 см
Тогда количество плитки для заполнения такой полосы равно:
5000:50=100 (шт.)
Вариант решения №2 (через площадь - универсальный метод).
Вычислим площадь полосы плитки Sд.. Для этого из площади наружного контура Sн. вычтем площадь внутреннего контура Sв.. Площади будем вычислять как сумму площадей двух прямоугольников, как это показано на рис 3.
Sн.=Sн₁.+Sн₂=12*10+8*4=152 (м²).
Аналогично вычислим площадь внутренней фигуры Sв. (см. рис. 4):
Sв.=Sв₁.+Sв₂=11*9+7*4=127 (м²).
Тогда площадь дорожки из плитки Sд. равна:
Sд.=Sн.-Sв.=152-127=25 (м²)
Тогда количество плиток можно найти, разделив площадь дорожки Sд. на площадь одной плитки Sп..
Sп. = 0,5*0,5=0,25 (м²)
Количество плитки равно:
Sд./Sп. =25/0,25=100 (шт.)
Вариант решения №3 (через периметр оси симметрии плитки).
Т.к. в нашем случае плитка - уникальная, самая симметричная из четырёхугольников фигура (квадрат) и по условию задания дан (косвенно) наружный периметр фигуры, выложенной плиткой, размером 50х50 см, то очевидно, что периметр, проведённый через оси вертикальных и горизонтальных полос будет отстоять от наружного контура на 0,25 м и равен (см. рис. 5):
(12-2*0,25)+(14-2*0,25)+(8-2*0,25)+(4-0,25+0,25)+(4+0,25-0,25)+(10-2*0,25) = 11,5+13,5+7,5+4+4+9,5=50 (м)
Разделим длину осевого периметра плитки на линейный размер одной плитки:
50/0,5=100 (шт.)