Борын-борын заманда булган икән, ди, бер кеше. Бу кеше нең исеме Нарый булган, ди.
Көннәрдән беркөнне Нарый чыгып киткән, ди, юлга. Бара да бара, ди, бу. Бара торгач барып кергән, ди, бу ялтырап торган боз өстенә. Боз өстенә барып керүе булган, аягы таеп, әйләнеп төшүе булган.
1) Если через две названные точки, являющиеся серединами диагоналей трапеции, провести линию, пересекающую боковые стороны трапеции, то получим 2 треугольника, каждый из которых опирается на сторону 8 см, и в каждом из которых продолжение линии за стороной, являющейся диагональю трапеции, является средней линий, т.к. проведенная линия параллельна основания трапеции.
2) Средняя линия равна 1/2 той стороны, которой она параллельна.
Значит, средняя линия каждого из треугольников равна:
8 : 2 = 4 см.
3) Теперь можно рассчитать среднюю линию трапеции.
Она состоит из 3-х отрезков:
4 см (средняя линия первого треугольника) + 5 см (расстояние между точками, являющими серединами диагоналей трапеции) + 4 см (средняя линия второго треугольника) = 13 см
3) Средняя линия трапеции равна полусумме её оснований. Составим уравнение и решим его:
(8+х) / 2 = 13, где х - второе основание, которое нам надо найти.
Борын-борын заманда булган икән, ди, бер кеше. Бу кеше нең исеме Нарый булган, ди.
Көннәрдән беркөнне Нарый чыгып киткән, ди, юлга. Бара да бара, ди, бу. Бара торгач барып кергән, ди, бу ялтырап торган боз өстенә. Боз өстенә барып керүе булган, аягы таеп, әйләнеп төшүе булган.
— Боз, син нидән болай көчле?
— Көчле булсам,— ди Боз,— мине Кояш эретә алмас иде, — ди.
— Кояш, син нидән көчле? — ди Нарый.
— Көчле булсам, мине Болыт капламас иде.
— Болыт, син нидән көчле?
— Көчле булсам, мине Яңгыр тишеп чыкмас иде.
— Яңгыр, син нидән көчле?
— Көчле булсам,— ди Яңгыр,— мине Җир сеңдермәс иде.
— Җир, син нидән көчле?
— Көчле булсам, мине Үлән тишеп чыкмас иде.
— Үлән, син нидән көчле?
— Көчле булсам, мине Сыер ашамас иде.
— Сыер, син нидән көчле?
— Көчле булсам, мине Пычак кисмәс иде. Хәзер Пычактан сорый инде Нарый:
— Пычак, син нидән көчле?
— Көчле булсам, мине Ут эретмәс иде.
— Ут, син нидән көчле?
— Көчле булсам, мине Су сүндермәс иде.
— Су, син нидән көчле?
— Көчле булсам, мине кеше җиңмәс иде, ә ул мине җиңә, тегермәннәр әйләндерергә җигә! — ди Су.
Шуннан соң Нарый, кешедән дә көчле нәрсә юк икән дип, үз юлына китә, шуның белән әкият тә бетә.
18 см
Пошаговое объяснение:
1) Если через две названные точки, являющиеся серединами диагоналей трапеции, провести линию, пересекающую боковые стороны трапеции, то получим 2 треугольника, каждый из которых опирается на сторону 8 см, и в каждом из которых продолжение линии за стороной, являющейся диагональю трапеции, является средней линий, т.к. проведенная линия параллельна основания трапеции.
2) Средняя линия равна 1/2 той стороны, которой она параллельна.
Значит, средняя линия каждого из треугольников равна:
8 : 2 = 4 см.
3) Теперь можно рассчитать среднюю линию трапеции.
Она состоит из 3-х отрезков:
4 см (средняя линия первого треугольника) + 5 см (расстояние между точками, являющими серединами диагоналей трапеции) + 4 см (средняя линия второго треугольника) = 13 см
3) Средняя линия трапеции равна полусумме её оснований. Составим уравнение и решим его:
(8+х) / 2 = 13, где х - второе основание, которое нам надо найти.
8+х = 26,
х = 18 см
ответ: 18 см.