В ранці в калюжі плавало 15 синіх і 95 червоних амеб. іноді вони зливалися, якщо зливаються дві червоні то виходить одна синя амеба і якщо зливаються дві сині то та амеба що вийшла одразу ділиться і призводить до появи трьох червоних амеб ввечері в калюжі виявилось 100 амеб. Скільки з них синіх?
Доказательство теоремы Пифагора
Пусть треугольник ABC - прямоугольный треугольник с прямым углом C (рис. 2).
Проведём высоту из вершины C на гипотенузу AB, основание высоты обозначим как H .
Прямоугольный треугольник ACH подобен треугольнику ABC по двум углам ( ∠ACB=∠CHA=90∘, ∠A - общий). Аналогично, треугольник CBH подобен ABC .
Введя обозначения
BC=a,AC=b,AB=c
из подобия треугольников получаем, что
ac=HBa,bc=AHb
Отсюда имеем, что
a2=c⋅HB,b2=c⋅AH
Сложив полученные равенства, получаем
a2+b2=c⋅HB+c⋅AH
a2+b2=c⋅(HB+AH)
a2+b2=c⋅AB
a2+b2=c⋅c
a2+b2=c2
Что и требовалось доказать.
етырехугольник АВСД, уголАДВ=уголДВС=90-это внутренние разносторонние углы, если при пересечении двух прямых (АД и ВС) третьей прямой (ВД) внутренние разносторонние углы равны то прямые параллельны, АД паралельна ВС, но АД=ВС, тогда есдли в четырехугольнике две стороны равны и параллельны то четыререхугольник параллелограмм, АВ паралельна СД, АВ=СД, треугольник АВД прямоугольный, уголАВД=60, уголА=90-60=30, ДЕ медиана, медиана в прямоугольном треугольнике проведенная к гипотенузе =1/2 гипотенузы, АЕ=ВЕ=ЕД=1/2АВ, треугольник АЕД равнобедренный, АЕ=ЕД
Пошаговое объяснение: