В равнобедренном треугольнике ABC (AB=AC) биссектриса BL пересекается с биссектрисой угла A в точке I. Точка X на стороне AB выбрана так, что BX=BC. Прямая XI пересекает основание BC в точке Y. Докажите, что LC=BY.
Dа = 18 ми Dв-? 1) Lа = пDа - длина окружности большой монетки. 2) 2•Lа - длина пути, проделанной меткой на большой монетке, совершившей 2 оборота. 3) Lв = пDв Меньшая монетка должна для того, чтобы метки совпали, совершить также полное число оборотов. То есть число оборотов должно быть натуральным числом к, причем к>2, 2•Lа = к•Lв 2пDа = кпDв Число п в обеих частях уравнения можно сократить. 2Dа = кDв Dв = 2Dа/к Рассмотрим случаи, когда количество оборотов малой монетки к= 3; 4; 5: Dв1 = 2•18/3 = 12 мм - первый возможный диаметр монетки в. Dв2 = 2•18/4 = 9 мм - второй возможный диаметр монетки в. Dв3 = 2•18/5 = 7,2 мм - третий возможный диаметр монетки в. Но такой диаметр монетки вряд ли возможен. ответ: 12 мм или 9 мм.
Dв-?
1) Lа = пDа - длина окружности большой монетки.
2) 2•Lа - длина пути, проделанной меткой на большой монетке, совершившей 2 оборота.
3) Lв = пDв
Меньшая монетка должна для того, чтобы метки совпали, совершить также полное число оборотов. То есть число оборотов должно быть натуральным числом к, причем к>2,
2•Lа = к•Lв
2пDа = кпDв
Число п в обеих частях уравнения можно сократить.
2Dа = кDв
Dв = 2Dа/к
Рассмотрим случаи, когда количество оборотов малой монетки к= 3; 4; 5:
Dв1 = 2•18/3 = 12 мм - первый возможный диаметр монетки в.
Dв2 = 2•18/4 = 9 мм - второй возможный диаметр монетки в.
Dв3 = 2•18/5 = 7,2 мм - третий возможный диаметр монетки в. Но такой диаметр монетки вряд ли возможен.
ответ: 12 мм или 9 мм.