В равнобедренном треугольнике MNK с основанием MK угол N равен
120°. Высота треугольника, проведённая из вершины M, равна 12
Найдите длину стороны MK.
2. В треугольнике АMС проведена биссектриса СЕ. Найдите величину
угла MСЕ, если угол MАС равен 40°, а угол АMС равен 36°.
3. В 24 м одна от другой растут две сосны. Высота одной 50 м, а другой
18 м. Найдите расстояние между верхушками сосен.
4. Нарисовать прямоугольный треугольник ZXY и записать для него
все свойства.
5. Изобразить различные виды треугольников, обозначить компоненты
(медианы, биссектрисы, высоты)
ответ:
как известно, каноническим уравнение сферы с центром в точке о(x0; y0; z0) и радиуса r имеет вид (х – x0)2 + (у – у0)2 + (z – z0)2 = r2.
поскольку точки с (1; –1,5; 3) и d (–1; 2,5; –3) лежат на сфере и центр сферы принадлежат отрезку сd, то можно утверждать, что отрезок сd является диаметром сферы и центр сферы находится на середине отрезка сd.
для того, чтобы найти длину диаметра, воспользуемся формулой вычисления расстояния между двумя точками a(xa; ya; za) и b(xb; yb; zb): ав = √[(xb – xa)2 + (yb – ya)2 + (zb – za)2]. имеем сd = √[(–1 – 1)2 + (2,5 – (–1,5))2 + (–3 – 3)2] = √(22 + 42 + 62) = √(4 + 16 + 36) = √(56) = 2√(14). значит, r = сd : 2 = 2√(14) : 2 = √(14).
теперь определим координаты центра сферы о(x0; y0; z0). имеем x0 = (xc + xd) : 2 = (1 + (–1)) : 2 = 0 : 2 = 0; y0 = (yc + yd) : 2 = (–1,5 + 2,5) : 2 = 1 : 2 = 0,5; z0 = (zc + zd) : 2 = (3 + (–3)) : 2 = 0 : 2 = 0.
таким, образом, искомое уравнение имеет вид: (х – 0)2 + (у – 0,5)2 + (z – 0)2 = 14 или х2 + (у – 0,5)2 + z2 = 14.
проверим принадлежность к сфере точек с координатами (3; –1,5; √(7)) и (1; 2,5; 3). имеем 32 + (–1,5 – 0,5)2 + (√(7))2 = 9 + 16 + 7 = 32 ≠ 14, следовательно, точка с координатами (3; –1,5; √(7)) не принадлежит к сфере. аналогично, имеем 12 + (2,5 – 0,5)2 + 32 = 1 + 4 + 9 = 14, следовательно, точка с координатами (1; 2,5; 3) принадлежит к сфере.
ответы: х2 + (у – 0,5)2 + z2 = 14; точка с координатами (3; –1,5; √(7)) не принадлежит к сфере; точка с координатами (1; 2,5; 3) принадлежит к сфере.