В результате поворота вокруг начала координат точка А(4;3) перешла в точку А1(-3;4). Найдите координаты точек, в которые перейдут точки В(-2;5), С(-5;-1), Р(3;-2) Объясните подробно как решать данную задачу
Периметр - сумма длин всех сторон. У равнобедренного треугольника: две равные стороны и основание. Пусть а - сторона треугольника , b - основание. Р= a+a+b =30 см Следовательно может быть : 1) Основание больше на 3 см, чем сторона. Р= a+a+(a+3)= 30 см 3а+3=30 3а=30-3 3а=27 а=9 см - сторона треугольника 9+3=12 см - основание треугольника Р= 9+9+12 =30 см 2) Сторона больше на 3 см, чем основание. Р= (b+3)+(b+3) +b =30 3b+6= 30 3b=30-6 3b=24 b=8 см - основание 8+3= 11 см - сторона Р= 11+11+8=30 см. ответ: стороны равнобедренного треугольника могут быть: 1) 9 см, 9 см, 12 см 2) 11 см , 11 см, 8 см
Рассчитаем НОД
Алгоритм Евклида работает так: (a,b) = (b, a%b)
(% - остаток от деления, скобки - нод)
Тогда (45649, 16013) = (16013, 45649%16013) = (16013, 13623) = (13623, 16013%13623) = (13623, 2390) = (2390, 13623%2390) = (2390, 1673) = (1673, 2390%1673) = (1673, 717) = (717, 1673%717) = (717, 239) = 239 (717 поделилось на 239 нацело)
Итак, НОД этих двух чисел = 239
НОК невозможно рассчитать с алгоритма Евклида, зато мы можем воспользоваться формулой
a*b=НОД*НОК
a*b = 730 977 437
НОК = 730 977 437 / 239 = 3 058 483
У равнобедренного треугольника: две равные стороны и основание.
Пусть а - сторона треугольника , b - основание.
Р= a+a+b =30 см
Следовательно может быть :
1) Основание больше на 3 см, чем сторона.
Р= a+a+(a+3)= 30 см
3а+3=30
3а=30-3
3а=27
а=9 см - сторона треугольника
9+3=12 см - основание треугольника
Р= 9+9+12 =30 см
2) Сторона больше на 3 см, чем основание.
Р= (b+3)+(b+3) +b =30
3b+6= 30
3b=30-6
3b=24
b=8 см - основание
8+3= 11 см - сторона
Р= 11+11+8=30 см.
ответ: стороны равнобедренного треугольника могут быть:
1) 9 см, 9 см, 12 см
2) 11 см , 11 см, 8 см