В шестом классе 160 учеников. 30% из них посещают курсы иностранных языков. От него Из остальных есть те, кто посещает математические курсы, а 45% не посещают никаких курсов.
не пошел. Сколько студентов посещают математические курсы?
Составим уравнение плоскости (ABC). Оно имеет вид: ax+by+cz+d=0 Плоскость проходит через три точки A, B, C, поэтому справедливо следующее: Для A(4;3;0): 4a+3b+d=0 Для B(3;5;-1): 3a+5b-c+d=0 Для C(1;3;3): a+3b+3c+d=0 Получили систему из трех линейных уравнений с четырьмя неизвестными. Сразу же примем a=1, чтобы система решилась однозначно. (1) 3b+d=-4 (2) 5b-c+d=-3 (3) 3b+3c+d=-1 Умножим второе уравнение на 3 и прибавим к третьему, получим: 18b+4d=-10 или 9b+2d=-5 (4) Умножим первое уравнение на -2 и сложим с (4). -6b+9b-4d+4d=8-5 3b=3, b=1 Далее из (1) выразим d: d = -4-3b=-7 Далее из (2) выразим c: c = 5b+d+3=5-7+3=1. Таким образом, уравнение плоскости имеет вид: x+y+z-7=0. Теперь можно найти расстояние от точки D(5;3;1) до плоскости (ABC): ρ(D, (ABC))=|1*5+1*3+1*1-7|/sqrt(1^2+1^2+1^2)=2/sqrt(3)=2*sqrt(3)/3.
Пошаговое объяснение:
Сначала заметим, что сумма 1+2+...+n+57 должна быть четным числом, чтобы камень и гирьки можно было разложить на две равных чаши.
Отсюда сумма S = 1+2+...+n должна быть нечетной.
Найдем, при каком минимальном n можно уравновесить камень весом 57 грамм.
n = 10: S = 1+2+3+4+5+6+7+8+9+10 = 55 < 57 - мало.
n = 11: S = 55 + 11 = 66 > 57. Но S четное, поэтому не подходит.
n = 12: S = 66 + 12 = 78 - опять четное.
n = 13: S = 78 + 13 = 91 - подходит. Попробуем разложить на чаши.
Масса на каждой чаше должна быть:
m = (91 + 57)/2 = 148/2 = 74
На одной чаше: 57 + 1+2+3+4+7 = 57 + 17 = 74
На второй чаше: 5+6+8+9+10+11+12+13 = 19+10+20+25 = 29+45 = 74
На одной чаше с камнем получилось 5 гирек: 1,2,3,4,7.
n = 14: S = 91 + 14 = 105 - подходит. Раскладываем на чаши.
m = (105 + 57)/2 = 162/2 = 81
На одной чаше: 57 + 1+2+3+4+5+9 = 57 + 24 = 81
На второй чаше: 6+7+8+10+11+12+13+14 = 20+15+10+11+25 = 45+36 = 81
На одной чаше с камнем получилось 6 гирек: 1,2,3,4,5,9
И мне кажется, что при увеличении n количество гирек на чаше с камнем может расти неограниченно.
Например, при n = 17: S = 153, m = (153+57)/2 = 210/2 = 105
На одной чаше: 57 + 1+2+3+4+5+6+7+9+11 = 57 + 28 + 20 = 105
На другой чаше: 8+10+12+13+14+15+16+17 = 30+30+30+15 = 105
На одной чаше с камнем получилось 9 гирек: 1,2,3,4,5,6,7,9,11.
И так далее.
ax+by+cz+d=0
Плоскость проходит через три точки A, B, C, поэтому справедливо следующее:
Для A(4;3;0): 4a+3b+d=0
Для B(3;5;-1): 3a+5b-c+d=0
Для C(1;3;3): a+3b+3c+d=0
Получили систему из трех линейных уравнений с четырьмя неизвестными. Сразу же примем a=1, чтобы система решилась однозначно.
(1) 3b+d=-4
(2) 5b-c+d=-3
(3) 3b+3c+d=-1
Умножим второе уравнение на 3 и прибавим к третьему, получим:
18b+4d=-10 или 9b+2d=-5 (4)
Умножим первое уравнение на -2 и сложим с (4). -6b+9b-4d+4d=8-5
3b=3, b=1
Далее из (1) выразим d: d = -4-3b=-7
Далее из (2) выразим c: c = 5b+d+3=5-7+3=1.
Таким образом, уравнение плоскости имеет вид: x+y+z-7=0.
Теперь можно найти расстояние от точки D(5;3;1) до плоскости (ABC):
ρ(D, (ABC))=|1*5+1*3+1*1-7|/sqrt(1^2+1^2+1^2)=2/sqrt(3)=2*sqrt(3)/3.