В таблице, составленной в результате измерений, показана зависимость атмосферного давления р (в миллиметрах ртутного столба) от высоты һ(в километрах); h. 0 0,7 1 3 6 7 9 KM р, MM 729,2 675,4 | 631,5 531,3 | 484,4 | 433,6 | 403,5 рт. . СТ. Каково атмосферное давление на высоте 0,7 км? 6 км ? На какой высоте атмосферное давление равно 531,3 мм рт.ст.? 403,5мм рт.ст.? ответ: мм рт.ст. мм рт.ст., а на высоте 6 км равно атмосферное давление на высоте 0,7 км равно КМ, Атмосферное давление равно 531,3 мм рт.ст. на высоте КМ. атмосферное давление равно 403,5 мм рт.ст. на высоте ответить!
Взаємний вплив інформатики та математики поширюється і на процес навчання. З усіх шкільних предметів інформатика найбільше пов'язана з математикою. З урахуван-ням завдань дослідження ми визначили: які з апробованих в математиці методів і прийомів навчання доцільно застосувати в процесі навчання інформатики, в якій мірі може бути застосований метод навчання на задачах, що спільного у процесах розв'язування математичної задачі та розробки алгоритму розв'язування задачі за до ЕОМ, як актуалізація математичних методів і знань сприяє процесу навчання інформатики, які самостійні цілі алгоритмізації, що досягаються саме у процесі навчання інформатики.
Ми дійшли висновку, що ця багатогранна проблема вимагає подальшого дослідження. Творча і практична складові навчальної діяльності потребують особливої уваги. Об’єктом вивчення на уроках інформатики повинні стати саме основи цієї науки, а в освітньому середовищі має бути єдине трактування того, що розуміється під інформатикою як навчальним предметом і що розуміється під технологією як предметною галуззю. Розв’язання розвиваючої задачі формування технічного світогляду учнів має поєднуватись з розв’язанням фундаментальної задачі ознайомлення учнів з елементами наукової системології, яка має безпосереднє відношення до інформаційного моделювання. Важливо розуміти, що створення інформаційних моделей, побудова алгоритмів, робота з програмним забезпеченням ЕОМ – загальноосвітні завдання курсу інформатики. Шкільні предмети включають, наприклад, вивчення процесу побудови алгоритмів розв’язання відповідних задач. Незалежно від предметної галузі існує багато спільного в складанні цих алгоритмів (метод низхідного проектування тощо). Отже, існують загальні методи розробки алгоритмів, які лише конкретизуються в кожному з предметів. Природно, що вони повинні вивчатись школярами в узагальненому вигляді.
Дослідження свідчать, що при визначенні мети і практичній реалізації курсу інформатики необхідно враховувати: адекватність відображення наукової галузі в предметі; тенденції до інтеграції знань із різних наукових галузей; новизну курсу інформатики; специфіку вивчення предмета з урахуванням спеціалізації навчання, диференціації, МЗ; тенденції до зниження віку учнів; потребу у вирішенні проблем створення підручників, програмних засобів, комп'ютеризації шкіл; істотні зміни в соціальному житті суспільства та характері праці.
У ході дослідження проаналізовано й співставлено процеси розв’язування задач з математики та інформатики. У процесі розв’язування математичної задачі виділяють наступні етапи: 1) аналіз задачі; 2) схематичний запис умови з використанням математичної символіки, рисунків; 3) пошук розв’язування; 4) здійснення спо-собу розв’язування; 5) перевірка розв’язку; 6) дослідження задачі та розв’язку; 7) фор-мулювання відповіді; 8) навчально-пізнавальний аналіз задачі та розв’язку. Послідов-ність етапів може змінюватись, не всі вони обов’язкові, але перший, третій, четвертий і сьомий етапи виконуються для будь-якої задачі. Центральним і найбільш складним є третій, а восьмий – головний при об’єднанні задач у набори взаємозв’язаних задач, які використовуються для узагальнення і систематизації знань та навчанні методів розв’язування задач. У процесі розв’язування задач за до ЕОМ виділяють етапи: 1) постановка задачі, що включає побудову математичної моделі та виділення аргументів і результатів; 2) побудова алгоритму; 3) запис алгоритму; 4) реалізація алгоритму на ЕОМ; 5) аналіз результатів. Як і в процесі розв’язування математичної задачі, не всі ці етапи обов’язкові. Наприклад, побудовану модель можна дослідити за до готового програмного засобу. У процесі навчання багатоетапність спричиняє розгляд задач із різним ступенем “ваги” етапів для найбільш повного засвоєння суті кожного з них.
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Взаємний вплив інформатики та математики поширюється і на процес навчання. З усіх шкільних предметів інформатика найбільше пов'язана з математикою. З урахуван-ням завдань дослідження ми визначили: які з апробованих в математиці методів і прийомів навчання доцільно застосувати в процесі навчання інформатики, в якій мірі може бути застосований метод навчання на задачах, що спільного у процесах розв'язування математичної задачі та розробки алгоритму розв'язування задачі за до ЕОМ, як актуалізація математичних методів і знань сприяє процесу навчання інформатики, які самостійні цілі алгоритмізації, що досягаються саме у процесі навчання інформатики.
Ми дійшли висновку, що ця багатогранна проблема вимагає подальшого дослідження. Творча і практична складові навчальної діяльності потребують особливої уваги. Об’єктом вивчення на уроках інформатики повинні стати саме основи цієї науки, а в освітньому середовищі має бути єдине трактування того, що розуміється під інформатикою як навчальним предметом і що розуміється під технологією як предметною галуззю. Розв’язання розвиваючої задачі формування технічного світогляду учнів має поєднуватись з розв’язанням фундаментальної задачі ознайомлення учнів з елементами наукової системології, яка має безпосереднє відношення до інформаційного моделювання. Важливо розуміти, що створення інформаційних моделей, побудова алгоритмів, робота з програмним забезпеченням ЕОМ – загальноосвітні завдання курсу інформатики. Шкільні предмети включають, наприклад, вивчення процесу побудови алгоритмів розв’язання відповідних задач. Незалежно від предметної галузі існує багато спільного в складанні цих алгоритмів (метод низхідного проектування тощо). Отже, існують загальні методи розробки алгоритмів, які лише конкретизуються в кожному з предметів. Природно, що вони повинні вивчатись школярами в узагальненому вигляді.
Дослідження свідчать, що при визначенні мети і практичній реалізації курсу інформатики необхідно враховувати: адекватність відображення наукової галузі в предметі; тенденції до інтеграції знань із різних наукових галузей; новизну курсу інформатики; специфіку вивчення предмета з урахуванням спеціалізації навчання, диференціації, МЗ; тенденції до зниження віку учнів; потребу у вирішенні проблем створення підручників, програмних засобів, комп'ютеризації шкіл; істотні зміни в соціальному житті суспільства та характері праці.
У ході дослідження проаналізовано й співставлено процеси розв’язування задач з математики та інформатики. У процесі розв’язування математичної задачі виділяють наступні етапи: 1) аналіз задачі; 2) схематичний запис умови з використанням математичної символіки, рисунків; 3) пошук розв’язування; 4) здійснення спо-собу розв’язування; 5) перевірка розв’язку; 6) дослідження задачі та розв’язку; 7) фор-мулювання відповіді; 8) навчально-пізнавальний аналіз задачі та розв’язку. Послідов-ність етапів може змінюватись, не всі вони обов’язкові, але перший, третій, четвертий і сьомий етапи виконуються для будь-якої задачі. Центральним і найбільш складним є третій, а восьмий – головний при об’єднанні задач у набори взаємозв’язаних задач, які використовуються для узагальнення і систематизації знань та навчанні методів розв’язування задач. У процесі розв’язування задач за до ЕОМ виділяють етапи: 1) постановка задачі, що включає побудову математичної моделі та виділення аргументів і результатів; 2) побудова алгоритму; 3) запис алгоритму; 4) реалізація алгоритму на ЕОМ; 5) аналіз результатів. Як і в процесі розв’язування математичної задачі, не всі ці етапи обов’язкові. Наприклад, побудовану модель можна дослідити за до готового програмного засобу. У процесі навчання багатоетапність спричиняє розгляд задач із різним ступенем “ваги” етапів для найбільш повного засвоєння суті кожного з них.
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Случай n = 16 разбирается непосредственно.
Пошаговое объяснение:
Не забудь подписку и сердичку