В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ольга1525
ольга1525
25.07.2021 19:18 •  Математика

В театральную кассу поступило 20 билетов в театр, 15 билетов на концерт и 12 билетов в цирк. За день было продано 17 билетов. Пусть события A(среди этих 17-ти ровно 10 билетов в театр), B(ни один билет в цирк не был продан). Найти P(A), P(A/B).

Показать ответ
Ответ:
forest7775owc130
forest7775owc130
12.05.2020 19:14
Примитивная задача на формулу Лежандра, кой я нарешал достаточно в своем профиле
(можете посмотреть, там и более сложные формулировки есть).

Формула Лежандра определять вхождение простого в факториал, а произведение последовательных натуральных чисел и есть факториал, то есть:
1*2*3*4*5...*10 = 10! и произносится, как десять факториал.
К самой сути, как же определить кол-во людей в том или ином факториале? - Все просто, достаточно посчитать сколько в это произведение входит простой множитель 5, почему 5? - Потому что с произведением с 2 он дает тот заветный 0, который мы и пытаемся найти. Для примера 5^2*2^2 = 100, т.е. 5^2 два нуля. Есть ещё некая зависимость от двойки, но двойка в факториале встречается чаще 5-ки, поэтому достаточно найти лишь вхождение 5.
Формула простая: 
n!, [n//5]+[n//5^2]+[n//5^3]\ldots[n//5^k], k \in \mathbb{N},
(// - целочисленное деление)
очевидно, что начиная с определенного слагаемого они будут равны 0 и цепочка прервется.
Посчитаем для нашего примера:
25, [25//5]+[25//25]+[25/125]\ldots[25/5^k], после k>2, слагаемые равны 0, поэтому получаем 25//5+25//25 = 5+1 = 6 
Тем самым в \prod\limits_{n=1}^{25} n - 6 нулей.
0,0(0 оценок)
Ответ:
sofi0908
sofi0908
25.07.2020 03:25
   Наибольшее ТРЕХЗНАЧНОЕ число 999, но выражение 327+999=1326, что не кратно 10. Кратные 10 числа оканчиваются на 0, т.е. сумма двух цифр разряда единиц в слагаемых должна быть равна 10. П первом слагаемом это 7, а во втором пусть будет А.(т.е. представим  трехзначное число у как 99А, где А - цифра разряда единиц) тогда  по условию:
7 + А= 10;  А=10 - 7 = 3. И наше число 993
Проверка:
327 + 993 = 1320;  1320 : 10 = 132. Условие кратности выполнено.
и число 993  - максимальное, так как при других значениях цифры А условие кратности не будет выполняться.
Подробное решение:
      Пусть наше максимальное число у = 99А, где А - последняя его цифра. Разложим по разрядам:  99А = 900 + 90 + А . Условие кратности запишем как: 10*х, где х - число натурального ряда.
      По условию:  327 + (900 + 90 + А) = 10*х; ⇒ 1317  + А = 10*х; ⇒
А = 10*х -1317;
      Поскольку А - это цифра, то:
 0 ≤ А ≤ 9; ⇒ 0 ≤10*х - 1317 ≤ 9; ⇒  1317 ≤ 10*х ≤ 1326;  131,7 ≤ х ≤ 132, 6
     Единственное целое число, удовлетворяющее этому условию, это число 132. ⇒ х = 132;
     Тогда А = 10*х - 1317 = 1320 - 1317 = 3, т.е. А = 3, и наше число 993
ответ: у = 993
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота