(В+Ш)+(Ш+К)+(В+К)= 116+88+56= 260 это если по два раза посчитали все;
260:2=130 это (В+Ш+К) стаканчиков всего трёх видов вместе
(В+Ш+К)-(В+Ш)= 130-116=14ст К, одинаковые вычли, осталось клубничное;
(В+Ш+К)-(Ш+К)= 130-88=42ст В, ванильного
(В+Ш+К)-(В+К)= 130-56=74ст Ш, шоколадного
Проверка К+В+Ш= 14+42+74=130 три вида вместе ответ: шоколадного мороженого 74 стаканчика, ванильного 42 и клубничного 14 приготовили для королевского бала.
Ш+К=88
В+К=56
Все повторяются, ищем сумму и делим на два
(В+Ш)+(Ш+К)+(В+К)= 116+88+56= 260 это если по два раза посчитали все;
260:2=130 это (В+Ш+К) стаканчиков всего трёх видов вместе
(В+Ш+К)-(В+Ш)= 130-116=14ст К, одинаковые вычли, осталось клубничное;
(В+Ш+К)-(Ш+К)= 130-88=42ст В, ванильного
(В+Ш+К)-(В+К)= 130-56=74ст Ш, шоколадного
Проверка К+В+Ш= 14+42+74=130 три вида вместе
ответ: шоколадного мороженого 74 стаканчика, ванильного 42 и клубничного 14 приготовили для королевского бала.
Пусть Ф - сумма монет у Фомы.
Е - сумма монет у Ерёмы;
Ю - сумма монет у Юлия.
х - сумма монет Фома должен отдать Ерёме, чтобы у них было поровну.
Ф - х = Е + х
Если Фома отдаст Ерёме 70 монет, то у Ерёмы и Юлия будет поровну:
70 + Е = Ю
Если Фома отдаст Ерёме 40 монет, то у Фомы и Юлия будет поровну:
Ф - 40 = Ю
{ Ф - х = Е + х
{ 70 + Е = Ю
{ Ф - 40 = Ю
Получили систему из трех уравнений с 4-мя неизвестными:
{ Ф - 2х = Е (1)
{ 70 + Е = Ю (2)
{ Ф - 40 = Ю (3)
Сложим первые два уравнения:
Ф - 2х + 70 + Е = Е + Ю
Ф - 2х + 70 = Ю
Вычтем проученное уравнение из 3-го уравнение с третьим :
Ф - 40 - (Ф - 2х + 70) = Ю - Ю
Ф - 40 - Ф + 2х - 70 = 0
2х - 110 = 0
2х = 110
х = 110 : 2
х = 55 монет Фома должен отдать Ерёме, чтобы у них было поровну.
ответ: 55 монет.
Проверка:
{ Ф - 55 = Е + 55
{ 70 + Е = Ю
{ Ф - 40 = Ю
{ Ф = Е + 110
{ Е = Ю - 70 подставим в первое уравнение.
{ Ф = Ю + 40 подставим в первое уравнение.
Ю + 40 = Ю - 70 + 110
40 + 70 = 110
110 = 110
Пошаговое объяснение: