в треугольникке ABC угол A равен 54 градуса угол B равен 88 градусов отрезки AK и BE пересекаются в точке M yfqnb dtkbxbye eukf AMB tckb BE b AK ,bcctrnhbccs
Эту логическую задачу можно разрешить двумя 1) Первый заключается в последовательном предположении о количестве честных и нечестных гномов и последующей проверке логикой каждого нашего предположения; для начала допустим, что все двенадцать гномов лгуны, проверяем логику — первый гном, заявив «здесь нет ни одного честного гнома», сказал правду, значит, не выполняется наше первоначальное «все двенадцать лгуны»; для варианта «один гном честен» логика опять нарушена, ведь тогда выходит, что 2-ой, 3-ий, 4-ый и далее до 12-го гнома сказали правду, а мы предположили, что такой только один. Нетрудно убедиться, что применяя такой же алгоритм далее (последовательно предполагая, что 2-е, 3-е, 4-ро, 5-ро, 6-ро, 7-ро, 8-ро, 9-ро, 10-ро, 11-ро, 12-ро гномов говорят правду) мы почти во всех случаях получим сбой логики, исключение же составит только случай, когда правдивых гномов шестеро, ведь именно для этого варианта логика соблюдается: только седьмой, восьмой, девятый и далее до двенадцатого гномов не грешат против правды. Таким образом мы приходим к выводу, что на самом деле на полянке собралось шестеро честных и шестеро нечестных гномов. 2) Второй весьма близок к «эвристическому методу» - мы допускаем (помня про 50-ти процентную вероятность выпадения «орла» и «решки» при бросании монеты), что первые шесть гномов врут, а оставшиеся шесть — говорят правду. Проверяя такое предположение, приходим к выводу: если бы врущих было пять или меньше пяти, то правду сказали бы по крайней мере семь гномов – с шестого по двенадцатый, что не отвечает логике, а если бы говорящих правду гномов было семь или больше, то тогда выходит, что первые семь гномов солгали, то есть лжецов по крайней мере семь, но два раза по семь больше двенадцати, следовательно, наше первичное предположение: 6+6 — верно.
Чтобы получить новый знаменатель, надо домножить числитель и знаменатель на число, полученное от деления нового знаменателя на существующий знаменатель.
Чтобы получить дроби с одинаковым знаменателем, надо найти НОК имеющихся знаменателей.
Для этого знаменатели дробей надо разложить на простые множители и , взяв все множители большего из знаменателей, домножить его на те множители, которые в другом знаменателе есть, а в выбранном наборе множителей отсутствуют.
Получим наименьший общий знаменатель.
Числитель и знаменатель каждой из дробей надо домножить на недостающий множитель из наименьшего общего знаменателя.
1) Первый заключается в последовательном предположении о количестве честных и нечестных гномов и последующей проверке логикой каждого нашего предположения; для начала допустим, что все двенадцать гномов лгуны, проверяем логику — первый гном, заявив «здесь нет ни одного честного гнома», сказал правду, значит, не выполняется наше первоначальное «все двенадцать лгуны»; для варианта «один гном честен» логика опять нарушена, ведь тогда выходит, что 2-ой, 3-ий, 4-ый и далее до 12-го гнома сказали правду, а мы предположили, что такой только один. Нетрудно убедиться, что применяя такой же алгоритм далее (последовательно предполагая, что 2-е, 3-е, 4-ро, 5-ро, 6-ро, 7-ро, 8-ро, 9-ро, 10-ро, 11-ро, 12-ро гномов говорят правду) мы почти во всех случаях получим сбой логики, исключение же составит только случай, когда правдивых гномов шестеро, ведь именно для этого варианта логика соблюдается: только седьмой, восьмой, девятый и далее до двенадцатого гномов не грешат против правды. Таким образом мы приходим к выводу, что на самом деле на полянке собралось шестеро честных и шестеро нечестных гномов.
2) Второй весьма близок к «эвристическому методу» - мы допускаем (помня про 50-ти процентную вероятность выпадения «орла» и «решки» при бросании монеты), что первые шесть гномов врут, а оставшиеся шесть — говорят правду. Проверяя такое предположение, приходим к выводу: если бы врущих было пять или меньше пяти, то правду сказали бы по крайней мере семь гномов – с шестого по двенадцатый, что не отвечает логике, а если бы говорящих правду гномов было семь или больше, то тогда выходит, что первые семь гномов солгали, то есть лжецов по крайней мере семь, но два раза по семь больше двенадцати, следовательно, наше первичное предположение: 6+6 — верно.
Пошаговое объяснение:
Чтобы получить новый знаменатель, надо домножить числитель и знаменатель на число, полученное от деления нового знаменателя на существующий знаменатель.
1. 2/3=2*3 /3*3= 6/9; 2/3=2*5 /3*5=10/15; 2/3= 2*10 /3*10= 20/30.
2. 3/4= 3*6 /4*6= 18/24; 7/8= 7*3 /8*3= 21/24; 5/6=5*4 /6*4= 20/24.
Чтобы получить дроби с одинаковым знаменателем, надо найти НОК имеющихся знаменателей.
Для этого знаменатели дробей надо разложить на простые множители и , взяв все множители большего из знаменателей, домножить его на те множители, которые в другом знаменателе есть, а в выбранном наборе множителей отсутствуют.
Получим наименьший общий знаменатель.
Числитель и знаменатель каждой из дробей надо домножить на недостающий множитель из наименьшего общего знаменателя.
Например: 16=4*4 ,а 12=4*3, значит НОК=4*4*3=48 -новый знаменаталь.
3. а) 5/16= 5*3 /16*3=15/48 и 7/12=7*4 /12*4= 28/48.
б) 2/21= 2*2 /21*2= 4/42 и 3/14= 3*3 /14*3 =9/42.
4. 8/9=8*2 /9*2=16/18; 8/9= 8*6 /9*6= 48/54; 8/9=8*10 /9*10=80/90.
5. 3/4= 3*12 / 4*12=36/48; 7/8= 7*6 /8*6= 42/48; 5/6= 5*8 / 6*8=40/48.
6. а) 7/15= 7*4 /15*4=28/60 и 5/12=5*5 / 12*5=25/60.
б) 3/26= 3*3 /26*3=9/78 и 5/39= 5*2 /39*2= 10/78.