Для начала, давайте вспомним некоторые основные свойства окружности и треугольника.
Свойства окружности:
1) Любой угол, написанный над дугой, вдвое больше центрального угла, стоящего на той же дуге.
2) Дуга, образованная двумя касательными, каждая из которых касается окружности в разных точках, равна полусумме или полуразности дуг, образованных другими двумя касательными, каждая из которых также касается окружности в разных точках.
Свойства треугольника:
1) Сумма углов треугольника равна 180 градусам.
2) Угол при основании равнобедренного треугольника равен половине разности дополнительных углов его вершин.
Теперь перейдем к решению задачи.
У нас есть угол А величиной 65 градусов и окружность, которая вписана в этот угол и касается его сторон в точках B и С. Мы должны найти угол BOC.
Давайте начнем с построения диаграммы. Нарисуем окружность в угле А и обозначим центр окружности буквой O.
O
\
\
\
B C
Теперь нам нужно обратить внимание на свойства окружности и треугольника.
Используя свойство окружности, который говорит, что центральный угол, стоящий на том же дуги, вдвое больше угла, написанного над этой дугой, можем сказать, что угол БОС равен 65/2 градусам (поскольку угол А равен 65 градусам).
Используя свойство треугольника, которое говорит нам, что сумма углов треугольника равна 180 градусам, мы можем выразить угол BOC:
угол BOC = 180 - угол БОС - угол БСО
Так как угол БОС равен 65/2 градусам, мы можем записать:
Свойства окружности:
1) Любой угол, написанный над дугой, вдвое больше центрального угла, стоящего на той же дуге.
2) Дуга, образованная двумя касательными, каждая из которых касается окружности в разных точках, равна полусумме или полуразности дуг, образованных другими двумя касательными, каждая из которых также касается окружности в разных точках.
Свойства треугольника:
1) Сумма углов треугольника равна 180 градусам.
2) Угол при основании равнобедренного треугольника равен половине разности дополнительных углов его вершин.
Теперь перейдем к решению задачи.
У нас есть угол А величиной 65 градусов и окружность, которая вписана в этот угол и касается его сторон в точках B и С. Мы должны найти угол BOC.
Давайте начнем с построения диаграммы. Нарисуем окружность в угле А и обозначим центр окружности буквой O.
O
\
\
\
B C
Теперь нам нужно обратить внимание на свойства окружности и треугольника.
Используя свойство окружности, который говорит, что центральный угол, стоящий на том же дуги, вдвое больше угла, написанного над этой дугой, можем сказать, что угол БОС равен 65/2 градусам (поскольку угол А равен 65 градусам).
Используя свойство треугольника, которое говорит нам, что сумма углов треугольника равна 180 градусам, мы можем выразить угол BOC:
угол BOC = 180 - угол БОС - угол БСО
Так как угол БОС равен 65/2 градусам, мы можем записать:
угол BOC = 180 - (65/2) - (65/2)
А теперь давайте посчитаем это:
угол BOC = 180 - (65/2) - (65/2)
= 180 - 65
= 115 градусов
То есть, угол BOC равен 115 градусам.