В зале театра 40 светильников: люстры и настенные бра. В каждой люстре 17 лампоч(-ек, -ки, -ка), в каждом бра — 3 лампочки. Число лампочек во всех люстрах равно числу лампочек во всех бра. Сколько люстр в зале? ответ: люстр(-ы).
Для нахождения экстремумов (в т.ч. минимумов), нужно взять производную, приравнять её нулю и решить. Полученные значения проверить на максимум и минимум.
Область допустимых значений x >-6
Имеем одно экстремальное значение х = -5. Если производная в этой точке меняет знак с минуса на плюс, то это минимум. Для практической проверки следует подставить в выражение производной значение икс несколько меньше (-5) и несколько больше (-5). Обычно следует выбирать такие значение, чтобы легче считалось.
Слева, или меньше (-5) выбираем х = -5,5 (в данном случае нельзя брать меньше минус 6, т.к. выйдем из ОДЗ).
Справа, или больше (-5) выбираем х = 0.
Итак, мы видим, что производная (слева направо) меняет свой знак с минуса на плюс. Это означает, что найденный экстремум является минимум. Если было наоборот, то был бы максимум.
Область допустимых значений x >-6
Имеем одно экстремальное значение х = -5. Если производная в этой точке меняет знак с минуса на плюс, то это минимум. Для практической проверки следует подставить в выражение производной значение икс несколько меньше (-5) и несколько больше (-5). Обычно следует выбирать такие значение, чтобы легче считалось.
Слева, или меньше (-5) выбираем х = -5,5 (в данном случае нельзя брать меньше минус 6, т.к. выйдем из ОДЗ).
Справа, или больше (-5) выбираем х = 0.
Итак, мы видим, что производная (слева направо) меняет свой знак с минуса на плюс. Это означает, что найденный экстремум является минимум. Если было наоборот, то был бы максимум.
x^2 + xy + y + y^2 + xy + x = 1 + 5
(x^2 + 2xy + y^2) + (x + y) - 6 = 0
(x + y)^2 + (x + y) - 6 = 0
Получаем квадратное уравнение относительно t = x + y:
t^2 + t - 6 = 0
По теореме Виета сумма корней равна -1, произведение -6. Угадываем корни: t = -3 или t = 2.
1) t = -3
x + y = -3 [*]
Рассматриваем первое уравнение:
x^2 + xy + y = 1
x(x + y) + y = 1
-3x + y = 1
Вычитаем из уравнения [*] получившееся уравнение.
x + y + 3x - y = -3 - 1
4x = -4
x = -1
y = -3 - x = -3 + 1 = -2.
2) Аналогично с t = 2.
x + y = 2
2x + y = 1
x = -1
y = 3
ответ. (-1, -2), (-1, 3).