В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Anna11111199933445
Anna11111199933445
14.04.2020 10:56 •  Математика

В1 и В2. Если можно, с объяснением

Показать ответ
Ответ:
ZNTV5
ZNTV5
18.07.2021 07:11
2-4+6-8+10-...+90-92+94-96+98
Берем первое и последнее: 2+98=100
Второе и предпоследнее: -1-96=-100
Третье и предпредпоследнее: 6+94=100
и т.д. 
Видно, что суммы будут равны только 100 и -100
Число чисел: 98/2=49
Без центрального числа число пар будет четное, значит их сумма будет равна 0
Остается только число, находящееся в центре, т.е на 25 месте ((49-1)/2+1=25)
Рассматривая последовательность, видим, что нечетные по номеру члены имеют знак плюс, четные - минус. Значит, наше число положительное
Его величина равна
25*2=50
2-4+6-8+10-...+90-92+94-96+98=50
ответ: 50
0,0(0 оценок)
Ответ:
Мялан
Мялан
05.04.2021 10:33

Приведем примерный алгоритм получения необходимых данных.

1.Нахождение области определения функции

Определение интервалов, на которых функция существует.

!!! Очень подробно об области определения функций и примеры нахождения области определения тут.

2.Нули функции

Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.

3.Четность, нечетность функции

Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.  

4.Промежутки знакопостоянства

Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.  

5. Промежутки возрастания и убывания функции.

Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.

6. Выпуклость, вогнутость.

Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.  

7. Наклонные асимптоты.

 

Пример исследования функции и построения графика №1

Исследовать функцию средствами дифференциального исчисления и построить ее график.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота