ВАРІАНТ 48. ПЕРПЕНДИКУЛЯР І ПОХИЛА СР. 1 КУРС. 1.3 точки до площини проведено дві похилі завдовжки 12 см і 8 см. Різниця проекцій цих
похилих дорівнює 6см. Знайти проекції похилих.
2.3 точок М та К опущено перпендикуляри на площину. Знайти відстань між точками Мік,
якщо перпендикуляри дорівнюють 20 см і 16 см, а відстань між основами 6 см та відрізок МК
не перетинає площину.
3.3 точок Ki M, які лежать у двох перпендикулярних площинах, опущено перпендикуляри KN
МР на пряму перетину площин. Знайти довжину відрізка KM, якщо KP =12 см, NM = 21 см, NP
= 3 см.
4. З вершини А прямокутника АВСД до його площини проведено перпендикуляр MA. Відстань
від точки M до решти вершин 7 см, 9 см, 12 см. Знайти довжину перпендикуляра MA. 1.
5.Відрізок довжиною 6м перетинає площину, кінці якого віддалені від площини на 3м та 18 дм.
Знайти довжину проекції відрізка на площину.
Пошаговое объяснение: Запишем решение для следующего выражения. Получается следующее решение.
(1,65 + 0,158) + 2,35 = 1,65 + 0,158 + 2,35 = 1,65 + 2,35 + 0,158 = 4,0 + 0,158 = 4,158.
Для того чтобы решить данное выражение сначала необходимо раскрыть скобки. Далее следует сложить удобным слагаемые. В результате получается ответ равный 4,158.
4,12 + 6,24 + 3,76 + 5,88 = (4,12 + 5,88) + (6,24 + 3,76) = 10,0 + 10,0 = 20,0.
В данном задании следует сложить попарно слагаемые. Затем следует сложить полученные значения. Значение данного выражения равно 20,0.
1.
Делители шести: 6; 2; 3; 1.
Делители двенадцати: 12; 3; 4; 6; 2; 1.
Делители тридцати шести: 36; 4; 9; 6; 12; 18; 3; 1.
Делители сорока пяти: 45; 9; 5; 15; 3; 1.
Общие делители чисел: 3.
2.
НОД (15; 40) = 5
15 = 3 * 5
40 = 5 * 2^3
НОД (36; 60) = 3 * 2^2 = 12
36 = 3^2 * 2^2
60 = 5 * 2^2 * 3
НОД (75; 100) = 5^2 = 25
75 = 5^2 * 3
100 = 5^2 * 2^2 * 1
3.
НОК (3; 7) = 7 * 3 = 21
3 = 3
7 = 7
НОК (12; 15) = 3 * 5 * 2^2 = 60
12 = 3 * 2^2
15 = 5 * 3
НОК (30; 18) = 5 * 2 * 3^2 = 90
30 = 5 * 2 * 3
18 = 3 ^2 * 2
УСПЕХОВ! ОБРАЩАЙТЕСЬ!
Подробнее - на -
Пошаговое объяснение: