Среди выбранных 5 телевизоров с дефектами могут оказаться 0,1,2,3,4 или 5 телевизоров. Таким образом, случайная величина X - количество телевизоров с дефектами среди выбранных - может принимать значения 0,1,2,3,4,5. Найдём соответствующие вероятности:
1) Строим отрезок, равный радиусу. Например, 2 см. То есть r = 2 см.
2) Отмечаем центр окружности (им будет край отрезка).
3) Измеряем циркулем отрезок, проводим окружность. Раствор циркуля должен оставаться неизменным.
4) Прикладываем линейку к радиусу и "продлеваем" его до пересечения с окружностью.
5) Чтобы узнать длину радиуса, нужно измерить расстояние от центра окружности до любой точки окружности.
упрощённый)
1) Берем произвольную длину радиуса. Пусть r = 2 см.
2) Так как радиус равен половине диаметра, то получаем следующее (вместо r подставляем значение радиуса):
d = 2r ⇒
d = 2·2 = 4 (см) - длина диаметра.
3) Отмечаем центр отрезка (диаметра). Это будет центр окружности.
Пусть O – центр окружности.
4) Строим окружность с центром в точке О.
5) Чтобы узнать длину радиуса, измеряем расстояние от центра окружности до любой точки окружности.
Пошаговое объяснение:
Среди выбранных 5 телевизоров с дефектами могут оказаться 0,1,2,3,4 или 5 телевизоров. Таким образом, случайная величина X - количество телевизоров с дефектами среди выбранных - может принимать значения 0,1,2,3,4,5. Найдём соответствующие вероятности:
p0=13/20*12/19*11/18*10/17*9/16=429/5168=1287/15504;
p1=C(7,1)*C(13,4)/C(20,5)=5005/15504 (здесь C(n,k) - число сочетаний из n по k);
p2=C(7,2)*C(13,3)/C(20,5)=6006/15504;
p3=C(7,3)*C(13,2)/C(20,5)=2730/15504;
p4=C(7,4)*C(13,1)/C(20,5)=455/15504;
p5=7/20*6/19*5/18*4/17*3/16=21/15504.
Проверка: p0+p1+p2+p3+p4+p5=15504/15504=1 - значит, вероятности найдены верно.
Составляем ряд распределения случайной величины X:
xi 0 1 2 3 4 5
pi 1287/15504 5005/15504 6006/15504 2730/15504 455/15504 21/15504
Матем. ожидание M[X]=∑xi*pi=7/4; дисперсия D[X]=∑{xi-M[x]}²*pi=273/304.