Вариант II 1. Выполните деление: a) 171,84:48; B) 11,7:0,045; 2. Решите уравнение: 6) 8,9:200; г) 5,9:0,1. 8,5у-6,5=10,5. 3. Округлите числа: 10,275 до десятых; 10, 315 до 324,784 до сотых; 324,884, 9 237,45 до единиц и радо единицу 4. Найдите значение выражения: 2,25:y+3,35:у при у=0,01. 5. Найдите среднее арифметическое чисел: 2,5; 41,7; 42,3. 40,9; 43,1; 42,3
ответ: ряд сходится, при решении задачи использован признак сравнения.
Пошаговое объяснение:
Сравним это ряд с рядом обратных квадратов ∑1/n², который, как известно, сходится. Для этого составим разность 1/n²-(n+1)/(n⁴+1)=(n⁴-n³-n²+1)/[n²*(n⁴+1)]. Так как знаменатель этой дроби положителен при любом n, то её знак будет зависеть от знака числителя n⁴-n³-n²+1. Но n⁴-n³-n²+1=n²*[(n-1/2)²-5/4]+1=n²*(n-1/2)²-5/4*n²+1. Отсюда следует, что числитель обращается в ноль лишь при n=1; если же n>1, то он положителен, а это значит, что при n>1 1/n²>(n+1)/(n⁴+1). Поэтому данный ряд сходится.
Это задача, как правило, - на нахождение наибольшего общего делителя чисел 58 и 64. По алгоритму Евклида НОД данных чисел равен двум, т.к.
НОД(58;64)=НОД(58;64-58)=НОД(58;6)=
НОД(58-6;6)=НОД(52;6)=НОД(52-6;6)=НОД(46;6)=
НОД(46-6;6)=НОД(40;6)=НОД(40-6;6)=НОД(34;6)=
=НОД(34-6;6)=НОД(28;6)=НОД(28-6;6)=НОД(22;6)=
НОД(22-6;6)=НОД(16;6)=НОД(16-6;6)=НОД(10;6)=
НОД(10-6;6)=НОД(4;6)=НОД(4;6-4)=
НОД(4;2)=НОД(4-2;2)=НОД(2;2)=2. Можно сделать два одинаковых подарка, в которых будет по 58/2=29 (шоколадок) и 64/2=32 /леденца./
В задаче надо было найти возможное количество подарков. Меньше НОД, я бы еще указал другие варианты, но в данной задаче, кроме двойки, числа 58 и 64 делятся еще только на единицу.
ответ 1 или 2.