Васе надо решить 140 задач.Ежедневно он решает на одно и тоже кол-во задач больше по сравнению с предыдущим днём.Известно,что за первый день Вася решил 8 задач.Определить,сколько задач решил Вася в последний день,если со всеми задачами он справлился за 7 дней. (9 класс)
1) - 6 2/3 - 8,75 = - 20/3 - 8 3/4 = - 20/3 - 35/4 = - (80/12 + 105/12) = - 185/12 = - 15 5/12
2) - 3 7/15 + 0,4 - 6 1/3 = - 3 7/15 + 2/5 - 6 1/3 = - 52/15 + 2/5 - 19/3 = - 52/15 + 6/15 - 95/15 = - 1/15 * ( 52 - 6 + 95) = - 1/15 * 151 = - 151/15 = - 10 1/15
3)-1,5 - 3 4/5 - 8 3/20 = - 1 1/2 - 3 4/5 - 8 3/20 = - 3/2 - 19/5 - 163/20 = - 30/20 - 76/20 - 163/20 = - 1/20 * (30 + 76 + 163) = - 1/20 * 269 = - 269/20 = -13 9/20
4) - 2 5/8 - 9,25 - 3/4 = - 2,625 - 9,25 - 0,75 = - (2,625 + 9,25 + 0,75) = - 12,625 = 12 5/8
Скорость сближения велосипедистов равна:
15-10=5 (км/час)
Время сближения:
2 : 5=0,4 (час)
Время движения (t) у обоих велосипедистов одинаковое.
Первый велосипедист проедет расстояние:
S1=15*t
Обозначим количество кругов у первого велосипедиста за (n1)
При количестве кругов n1, расстояние пройденное первым велосипедистом составит:
S1=5*0,4*n1=2n1
Приравняем оба выражения S1
15t=2n1
Второй велосипедист проедет расстояние равное:
S2=10*t
Обозначим количество кругов у второго велосипедиста за (n2)
При количестве кругов n2, расстояние пройденное вторым велосипедистом составит:
S2=5*0,4*n2=2n2
Приравняем оба выражения S2
10t=2n2
Получилось два уравнения:
15t=2n1
10t=2n2
Разделим первое уравнение на второе, получим:
15t/10t=2n1/2n2
15/10=n1/n2
Делаем вывод, что минимальное количество кругов до встречи равно:
n1=15
n2=10
Из первого уравнения 15t=2n1 найдём значение (t)
t=2n1/15 подставим в это выражение n1=15
t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.