Вчем разница между тождеством и тождественно равным? говорят, что два выражения, значения которых равны при любых значения переменных, называются тождественно равными. например, выражения 3(х+у) и 3х+3у являюся тождественно равными. далее по определнию, получается, что 3(х+у) = 3х+3у верно при любых значениях х и у. такие равенства называются тождествами. равентсво, верное при любых значениях переменных, наззывается тождеством. так и не понятно, в чем же разница?
Так же logx(2)=1/log2(x)
Перепишем так систему (фигурная скобка):01, после возведения 2 в эту степень выйдет х>2(знаки сохраняются потому что 2^x больше если больше степень (если число между 0 и 1 то знаки пришлось бы менять но мы возводим 2 в степень))
Logx(2)<=-1 перепишем так -1<=log2(x)<0(если число меньше минус 1 то обратное между -1 и 0 а если число -1 то обратное -1) возводим 2 в эту степень 2^-1<=х<2^0(знаки сохраняются об этом уже говорилось) тогда 1/2<=х<1
Выходит объединение [1/2;1) и (2;+бесконечность)
ответ объединение [1/2;1) и (2;+бесконечность)
Обыкновенные дроби, определение и примеры
Обыкновенные дробиприменяются для описания количества долей. Рассмотрим пример, который приблизит нас к определению обыкновенной дроби.
Представим апельсин, состоящий из
12
долек. Каждая доля тогда будет – одна двенадцатая или
1
/
12
. Две доли –
2
/
12
; три доли –
3
/
12
и т.д. Все
12
долей или целое число будет выглядеть так:
12
/
12
. Каждая из используемых в примере записей является примером обыкновенной дроби.
Определение 3
Обыкновенная дробь – это запись вида
m
n
или
m
/
n
, где
m
и
n
являются любыми натуральными числами.
Согласно данному определению, примерами обыкновенных дробей могут быть записи:
4
/
9
,
11
34
,
917
54
. А такие записи:
√
11
5
,
1
,
9
4
,
3
не являются обыкновенными дробями.
Пошаговое объяснение: