В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
gerasiko
gerasiko
09.03.2022 13:30 •  Математика

Вектор a=(3;1;-1) вектор b=(-2;-1;0)

Показать ответ
Ответ:
amersjeo
amersjeo
22.06.2021 18:46

80 дет./мин.

Пошаговое объяснение:

Сначала I и II станок работали одновременно 1 ч. Производительность у них была одинаковая: 70 деталей/мин.

Значит за 1 час (т.е. за 60 мин.) на этих станках сделали по 70·60=4200 (деталей).

По истечении 1 часа включается в работу III станок, производительность которого неизвестна.

I станок снижает свою производительность на 10дет/мин: 70-10=60(дет/мин).

У II станка производительность остается 70дет/мин.

Время, которое работали три станка одновременно, неизвестно, обозначим его через х мин.

За х мин. на III станке было сделано столько деталей, сколько было к этому моменту на I станке:

60х - количество деталей, сделанных на I станке за х мин.

4200 - количество деталей, сделанных на I станке за первый час работы.

Всего на I станке сделано: 60х+4200 (деталей).

После этого станки работают ещё 3,5 часа, т.е. 210 минут.

Получается, что одновременно три станка работает х+210 минут.

За это время на III станке сделано столько деталей, сколько и на втором:

70(х+210) - количество деталей, сделанных на II станке за (х+210) мин.

4200 - количество деталей, сделанных на II станке за первый час работы.

Всего на II станке сделано: 70(х+210)+4200 (деталей).

Тогда производительность III станка можно записать как

\frac{60x+4200}{x}

или

\frac{70(x+210)+4200}{x+210}

Эти две величины одинаковые. Приравниваем их и решаем получившееся уравнение.

\frac{60x+4200}{x}=\frac{70(x+210)+4200}{x+210}

По свойству пропорции:

(60x+4200)(x+210)=x(70(x+210)+4200)\\ \\ 10(6x+420)(x+210)=10x(7(x+210)+420) |:10\\ \\ (6x+420)(x+210)=x(7x+1470+420)\\ \\ 6x^2+1260x+420x+88200=7x^2+1470x+420x |-420x\\ \\ 6x^2+1260x+88200=7x^2+1470x\\ \\ 0=7x^2+1470x-6x^2-1260x-88200\\ \\ x^2+210x-88200=0\\ \\ D=210*210+4*88200=100(21*21+4*882)=100*49(9+4*18)=100*49*9(1+4*2)=100*49*9*9\\ \\ x_1=\frac{-210+\sqrt{100*49*9*9} }{2}= \frac{-210+10*7*9}{2}=\frac{-210+630}{2}=\frac{420}{2}=210

x_2=\frac{-210-\sqrt{100*49*9*9} }{2} - не имеет физического смысла.

Значит три станка одновременно работали 210 мин.

В выражение

\frac{60x+4200}{x}

подставляем х=210 и находим производительность III станка.

\frac{60*210+4200}{210}= \frac{60*210}{210}+\frac{4200}{210}=60+20=80

ответ: производительность III станка 80 дет/мин.

0,0(0 оценок)
Ответ:
1) Находим область определения: вся числовая ось, кроме х = -5 / 4 (при этом значении знаменатель превращается в ноль).
2) Находим точки пересечения с осями:
х = 0  у = -3/5 это точка пересечения с осью у.
у = 0   надо числитель приравнять 0:  2х - 3 = 0   х = 3/2   это точка пересечения с осью х.
3) Исследуем функцию на парность или непарность:
Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0). 
Правда, чаще встречается название этих свойств функции как чётность и нечётность.
2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной.
4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает.
Если производная положительна, то функция возрастает и наоборот.
\frac{d}{dx} ( \frac{2x-3}{4x+5} )= \frac{22}{(4x+5)^2}.
Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4).
5) Находим экстремумы функции:
Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума.
6) Исследуем функции на выпуклость, вогнутость:
Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая.
Вторая производная равна f''= \frac{-176}{(4x+5)^3}.
При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута.
7) Находим асимптоты графика функции:
Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева
8) Можно найти дополнительные точки и построить график
График и таблица точек приведены в приложении.
1. исследовать функцию и построить график y(x)=(2x-3)/(4x+5) огромная решить , которое выполняется с
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота