Решение Формула для нахождения площади ортогональной проекции фигуры: S(орт)=cosα*S(фигуры), где α - угол между плоскостями,в одной из которых находится сама фигура, а во второй - ее проекция. По формуле Герона найдём сначала площадь самого треугольника: S(тр)=, где р-полупериметр треугольника, a,b,c-его стороны. Отсюда площадь равна: S(тр)=√(9*4*3*2)=6√6 cм² Теперь найдем косинус угла между плоскостями. Как сказано из условия, этот угол равен большему из углов этого треугольника. Известно, что напротив большей стороны лежит больший угол. В нашем случае большая сторона АС=7см, а значит наибольший угол треугольника - ∠В. Из теоремы косинусов найдем косинус этого угла: АС²=АВ²+ВС²-2*АВ*ВС*cos∠B ⇔ cos∠B=(АВ²+ВС²-АС²)/2*АВ*СВ=0.2 Т.к. ∠В=∠α(из условия), то площадь проекции этого треугольника равна: S(орт)=cos∠B*S(тр)=0.2*6√6=(6√6)/5 cм²
ΔАВС
АВ=5см
ВС=6см
АС=7см
--------
S(орт)-?
Решение
Формула для нахождения площади ортогональной проекции фигуры:
S(орт)=cosα*S(фигуры),
где α - угол между плоскостями,в одной из которых находится сама фигура, а во второй - ее проекция. По формуле Герона найдём сначала площадь самого треугольника:
S(тр)=, где р-полупериметр треугольника, a,b,c-его стороны. Отсюда площадь равна:
S(тр)=√(9*4*3*2)=6√6 cм²
Теперь найдем косинус угла между плоскостями. Как сказано из условия, этот угол равен большему из углов этого треугольника. Известно, что напротив большей стороны лежит больший угол. В нашем случае большая сторона АС=7см, а значит наибольший угол треугольника - ∠В. Из теоремы косинусов найдем косинус этого угла:
АС²=АВ²+ВС²-2*АВ*ВС*cos∠B ⇔ cos∠B=(АВ²+ВС²-АС²)/2*АВ*СВ=0.2
Т.к. ∠В=∠α(из условия), то площадь проекции этого треугольника равна:
S(орт)=cos∠B*S(тр)=0.2*6√6=(6√6)/5 cм²
ответ: S(орт)=(6√6)/5 см²
Так как на мотете может выпасть орёл или герб, а всего монет три, то всего возможно вариантов 23 = 8. Возможные варианты выпадений:
1) О О О;
2) О О Р;
3) О Р О;
4) О Р Р;
5) Р О О;
6) Р О Р;
7) Р Р О;
8) Р Р Р;
Где Р – решка (герб), О – орёл.
Условию, что только на одной монете выпадет герб, удовлетворяют 3 случая: (2), (3), (5).
Чтобы найти вероятность, что герб выпадет только на одной монете, необходимо разделить благоприятные исходы на общее число исходов:
P = 3/8 = 0,375.
ответ: 0,375.
Условию, что на всех монетах выпадет герб, удовлетворяет 1 случай: (8).
Чтобы найти вероятность, что герб выпадет на всех монетах, необходимо разделить благоприятные исходы на общее число исходов:
P = 1/8 = 0,125.
ответ: 0,125.
Условию, что герб выпадет хотя бы на одной монете, удовлетворяет 7 случаев: с (2) по (8).
Чтобы найти вероятность, что герб выпадет хотя бы на одной монете, необходимо разделить благоприятные исходы на общее число исходов:
P = 7/8 = 0,875.
ответ: 0,875.
Условию, что герб выпадет не менее, чем на двух монетах, удовлетворяют 4 случая: (4), (6), (7), (8).
Чтобы найти вероятность, что герб выпадет не менее, чем на двух монетах, необходимо разделить благоприятные исходы на общее число исходов:
P = 4/8 = 0,5.
ответ: 0,5.