Вграфе n вершин степень каждой вершины равна к чему не могут быть равны нык выберите все варианты n равно 1)n= 101 c равно 2 2) n равно 101 c равно 3 3) n равно 100 c равно 5 4)n равно 99 c равно 98 5)n равно 99 c равно 100 !
Расчет для 1993 года - 456-128 = 328, делим на М и Д Д93 = 164, М93 = 164+128=292. Для последующих годов пишем формулы Д(93+n) = Д93+6n = 164+6n М(93+n) =М93-2n = 292-2n 1a) Всего в 2015. Вычисляем n = 2015-1993 = 22 года. Подставим в формулу В(2015) = В(93)+4n = 456+22*4 = 544 чел. ОТВЕТ 1b) М(93-2n) = Д(93+6n) - поровну М и Д. 164+6n = 292-2n 8n=292-164 =128, n=16 N=1993+16= 2009 год. - ОТВЕТ 1с) Сколько Всего, когда Д=М-40 ? 164+6n +40 =292-2n 8n = 292-164-40 = 88 n=11 N=1993+11=2004 - год олимпиады. В(04) = В(93)+4*11 = 456+44 = 500 - ОТВЕТ (М=270 Д=230 В=500) 1d) N - Д = 2*М 164 +6n = 2*(292-2n) = 584-4n 10n = 584-164 = 420 n = 42 N=1993+42= 2035 - ОТВЕТ (М=208 Д=416 В=624) 1е) В среднем 550 чел. N=? 550 - В(93)= 550-456 =94 - делим на 2 для среднего n= 47 n =47 N=1993+47=2040 - ОТВЕТ (В(40)=644 В(16)=548 В(17)=552) Проверено.
456-128 = 328, делим на М и Д
Д93 = 164, М93 = 164+128=292.
Для последующих годов пишем формулы
Д(93+n) = Д93+6n = 164+6n
М(93+n) =М93-2n = 292-2n
1a) Всего в 2015. Вычисляем n = 2015-1993 = 22 года.
Подставим в формулу
В(2015) = В(93)+4n = 456+22*4 = 544 чел. ОТВЕТ
1b) М(93-2n) = Д(93+6n) - поровну М и Д.
164+6n = 292-2n
8n=292-164 =128, n=16
N=1993+16= 2009 год. - ОТВЕТ
1с) Сколько Всего, когда Д=М-40 ?
164+6n +40 =292-2n
8n = 292-164-40 = 88 n=11 N=1993+11=2004 - год олимпиады.
В(04) = В(93)+4*11 = 456+44 = 500 - ОТВЕТ (М=270 Д=230 В=500)
1d) N - Д = 2*М
164 +6n = 2*(292-2n) = 584-4n
10n = 584-164 = 420 n = 42 N=1993+42= 2035 - ОТВЕТ
(М=208 Д=416 В=624)
1е) В среднем 550 чел. N=?
550 - В(93)= 550-456 =94 - делим на 2 для среднего n= 47
n =47 N=1993+47=2040 - ОТВЕТ (В(40)=644 В(16)=548 В(17)=552)
Проверено.
1. Раскроем скобки в левой части равенства:
(3x^2 + ax - b) * (x + 2) = 3x^3 + ax^2 - bx + 6x^2 + 2ax - 2b;
2. Получим равенство:
3x^3 + ax^2 + 6x^2 + 2ax - bx - 2b = 3x^3 + cx^2 + 3x - 2;
3. Сократим одинаковые члены и перенесем в левую часть все члены, содержащие множители a, b и c, а в правую - только с известными множителями:
ax^2 - cx^2 + 2ax - bx - 2b = -6x^2 + 3x - 2;
4. Т.к. равенство верно при любых x, множители в левой и правой частях перед x в одинаковой степени равны. Запишем систему равенств для a, b и c:
a - c = -6;
2a - b = 3;
2b = 2;
5. Из этих равенств получим:
b = 1;
a = (3 - 1) / 2 = 1;
c = 1 - (-6) = 7;
ответ: a = 1, b = 1, c = 7.