Обозначим за x длину первого прыжка кузнечика, тогда длины остальных прыжков равны 2x, 4x, 8x, 16x. Предположим противное, пусть последним прыжком кузнечик вернулся в исходную точку. Тогда перед последним прыжком он находился на расстоянии 16x от неё. Покажем, что за четыре первых прыжка он не мог попасть в точку на расстоянии 16x от исходной. Действительно, суммарная длина первых четырех прыжков равна x+2x+4x+8x=15x, поэтому преодолеть расстояние в 16x с их невозможно. Следовательно, после пятого прыжка кузнечик не сможет вернуться в исходную точку. Аналогично можно доказать, что после любого другого прыжка кузнечик не сможет вернуться в исходную точку. Например, для третьего прыжка его длина равна 4x, а длина двух предыдущих прыжков равна x+2x=3x<4x.
Предложим, что основание равнобедренного треугольника = 7 см, значит, боковые стороны равны (из определения равнобедренного треугольника "Равнобедренный треуголник - это треугольник, у которого боковые стороеы равны"), найдем их.19 - 7 = 12 см. 12:2 = 6 см.
Вспомним "Неравенство треугольников". Каждая сторона треугольника меньше суммы двух других сторон. Возьмем треугольник АВС, например (прикреплен к ответу). Проверяем.
AB < AC+BC AC > AB+BC ВС < AB+AC
6 см < 13 см 7 см < 12 см 6 см < 13 см
Мы доказали, что такой треугольник существует.
ответ: основание = 7 см, боковые стороны = по 6 см каждая.
Предложим, что основание равнобедренного треугольника = 7 см, значит, боковые стороны равны (из определения равнобедренного треугольника "Равнобедренный треуголник - это треугольник, у которого боковые стороеы равны"), найдем их.19 - 7 = 12 см. 12:2 = 6 см.
Вспомним "Неравенство треугольников". Каждая сторона треугольника меньше суммы двух других сторон. Возьмем треугольник АВС, например (прикреплен к ответу). Проверяем.
AB < AC+BC AC > AB+BC ВС < AB+AC
6 см < 13 см 7 см < 12 см 6 см < 13 см
Мы доказали, что такой треугольник существует.
ответ: основание = 7 см, боковые стороны = по 6 см каждая.