Дана функция у = (3х² + 243)/х. Производная её равна y' = (3x² - 243)/x². Приравняем её нулю (достаточно числитель при знаменателе х ≠ 0). 3x² - 243 = 0, 3(x² - 81) = 0, х = 9 и х = -9. Это 2 критические точки. Получили 4 промежутка монотонности функции: (при х = 0 разрыв функции): (-∞; -9), (-9; 0), (0; 9) и (9; +∞). На промежутках находим знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. x = -10 -9 -5 0 3 9 10 y' = 0,57 0 -6,72 - -24 0 0,57. Как видим, в точке х = -9 максимум, у = -54. В точке х = 9 минимум, у = 54. На отрезке [1;8] максимум в точке х = 1 у = (3*1² + 243)/1 = 246. Минимум соответствует локальному минимуму функции х = 9, у = 54.
1) Составляем выражение для отношения a(n+1)/a(n), где a(n+1) и a(n) - соответственно n+1 - й и n - ный члены ряда: a(n+1)/a(n)=(x-1)*(3*n-1)²/[3*(3*n+2)²].
2) Составляем выражение для модуля этого отношения. Так как (3*n-1)²>0 и 3*(3*n+2)²>0, то /a(n+1)/a(n)/=/x-1/*(3*n-1)²/[3*(3*n+2)²].
3) Находим предел этого выражения при n⇒∞: lim /a(n+1)/a(n)/=1/3*/x-1/, так как lim (3*n-1)²/[3*(3*n+2)²]=1/3.
4) Составляем и решаем неравенство 1/3*/x-1/<1. Оно имеет решение -2<x<4, то есть x∈(-2;4). Поэтому -2<x<4 - интервал сходимости ряда.
5) Остаётся исследовать поведение ряда на концах этого интервала.
а) если x=-2, то ряд принимает вид (-1)^n/[(3*n-1)²]. Так как /(-1)^n/[(3*n-1)²]/=1/[(3*n-1)²]<1/n², а ряд обратных квадратов сходится, то в точке x=-2 данный ряд тоже сходится, причём - абсолютно.
б) если x=4, то ряд принимает вид 1/[(3*n-1)²]. Как только что было показано, данный ряд сходится - значит, данный ряд сходится и в этой точке. Поэтому областью сходимости ряда является интервал x∈[-2;4].
Производная её равна y' = (3x² - 243)/x².
Приравняем её нулю (достаточно числитель при знаменателе х ≠ 0).
3x² - 243 = 0,
3(x² - 81) = 0,
х = 9 и х = -9. Это 2 критические точки.
Получили 4 промежутка монотонности функции: (при х = 0 разрыв функции): (-∞; -9), (-9; 0), (0; 9) и (9; +∞).
На промежутках находим знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -10 -9 -5 0 3 9 10
y' = 0,57 0 -6,72 - -24 0 0,57.
Как видим, в точке х = -9 максимум, у = -54.
В точке х = 9 минимум, у = 54.
На отрезке [1;8] максимум в точке х = 1 у = (3*1² + 243)/1 = 246.
Минимум соответствует локальному минимуму функции х = 9, у = 54.
ответ: x∈[-2;4].
Пошаговое объяснение:
1) Составляем выражение для отношения a(n+1)/a(n), где a(n+1) и a(n) - соответственно n+1 - й и n - ный члены ряда: a(n+1)/a(n)=(x-1)*(3*n-1)²/[3*(3*n+2)²].
2) Составляем выражение для модуля этого отношения. Так как (3*n-1)²>0 и 3*(3*n+2)²>0, то /a(n+1)/a(n)/=/x-1/*(3*n-1)²/[3*(3*n+2)²].
3) Находим предел этого выражения при n⇒∞: lim /a(n+1)/a(n)/=1/3*/x-1/, так как lim (3*n-1)²/[3*(3*n+2)²]=1/3.
4) Составляем и решаем неравенство 1/3*/x-1/<1. Оно имеет решение -2<x<4, то есть x∈(-2;4). Поэтому -2<x<4 - интервал сходимости ряда.
5) Остаётся исследовать поведение ряда на концах этого интервала.
а) если x=-2, то ряд принимает вид (-1)^n/[(3*n-1)²]. Так как /(-1)^n/[(3*n-1)²]/=1/[(3*n-1)²]<1/n², а ряд обратных квадратов сходится, то в точке x=-2 данный ряд тоже сходится, причём - абсолютно.
б) если x=4, то ряд принимает вид 1/[(3*n-1)²]. Как только что было показано, данный ряд сходится - значит, данный ряд сходится и в этой точке. Поэтому областью сходимости ряда является интервал x∈[-2;4].